This comprehensive library of photovoltaic functions (PVSimLib) is an attempt to help the photovoltaics community to solve one of its long-lasting problems, the lack of a simple, flexible and comprehensive tool that can be used for photovoltaic calculations. The library…
This comprehensive library of photovoltaic functions (PVSimLib) is an attempt to help the photovoltaics community to solve one of its long-lasting problems, the lack of a simple, flexible and comprehensive tool that can be used for photovoltaic calculations. The library contains a collection of useful functions and detailed examples that will show the user how to take advantage of the resources present in this library. The results will show how in combination with other Python libraries (Matplotlib), this library becomes a powerful tool for anyone involved in solar power.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Current solar cells use a silver-printed front grid for electron conduction. Unfortunately, silver is expensive, leading to research into alternative materials. Copper is the most viable but poses grain growth problems and stress problems silver does not. This paper has…
Current solar cells use a silver-printed front grid for electron conduction. Unfortunately, silver is expensive, leading to research into alternative materials. Copper is the most viable but poses grain growth problems and stress problems silver does not. This paper has characterised the effects of proprietary additives, thickness of the copper film layer, current density, and grain growth on stress. Per Stoney's equation, increased thickness leads to decreased thickness. However, if the current density is too high, the plated copper will become porous. Grain growth, quantified by the ratio of the intensity of the (1 1 1) plane and the (2 0 0) plane, increases over time, thus increasing the ratio which further equations to increased stress. Future work would be gathering more data to further investigate the relationship between additives and stress, current densities and stress, and grain growth over time and stress.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Highly flexible modules using thin 153 cm[superscript 2] silicon crystalline cells and transparent fluoropolymer foil are demonstrated. The modules can be flexed 200 times around a bend radius of 4 cm without change in efficiency. The silicon crystalline heterojunction solar…
Highly flexible modules using thin 153 cm[superscript 2] silicon crystalline cells and transparent fluoropolymer foil are demonstrated. The modules can be flexed 200 times around a bend radius of 4 cm without change in efficiency. The silicon crystalline heterojunction solar cells are 65±5 μm-thick with efficiencies up to 18.4%. Cracks in the solar cells and interconnections that are induced by mechanical stress during module bending are examined using electroluminescence. Two interconnection solutions are discussed: ribbons affixed to the busbars using a conductive adhesive, and indium coated wires directly bonded to the cell fingers. Modules using wire interconnection are found to be highly flexible with efficiencies greatly exceeding existing commercial flexible modules using thin films and have potential applications in light-weight modules for building integrated and portable photovoltaic power.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide…
It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells.
Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si.
In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM).
The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation during GaP epitaxial growth on Si by MBE were proposed. To achieve high performance of GaP/Si solar cells, different GaP/Si structures were designed, fabricated and compared, including GaP as a hetero-emitter, GaP as a heterojunction on the rear side, inserting passivation membrane layers at the GaP/Si interface, and GaP/wet-oxide functioning as a passivation contact. A designed of a-Si free carrier-selective contact MoOx/Si/GaP solar cells demonstrated 14.1% power conversion efficiency.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution.…
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of development. In addition, the general public is unaware of how solar energy works, how it is made, and how it stands economically. This series of lectures answering those three questions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution.…
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of development. In addition, the general public is unaware of how solar energy works, how it is made, and how it stands economically. This series of lectures answering those three questions. After two years doing photovoltaic research, and an undergraduate degree in Electrical Engineering, enough expertise has been acquired present on at a late high-school to early college level. Education is key to improving the popularity of using solar energy and the popularity of investing in photovoltaic research. Solar energy is a viable option to satisfy our energy crisis because the materials it requires can quickly be acquired, and there is enough of material to provide a global solution. In addition, the amount of solar energy that hits the surface of the earth in a day is orders of magnitude more than the amount of energy we require. The main goal of this project is to have an effective accessible tool to teach people about solar. Thus, the lectured will be posted on pveducation.com, YouTube, the Barrett repository, and the QUSST website. The content was acquired in four ways. The first way is reading up on the current papers and journals describing the new developments in photovoltaics. The second part is getting in contact with Stuart Bowden and Bill Daukser at Arizona State University's Solar Power Lab as well as the other faculty associated with the Solar Power Lab. There is quite a bit of novel research going on at their lab, as well as a student run pilot line that is actively building solar cells. The third way is reading about solar device physics using device physics textbooks and the PVEducation website made by Stuart Bowden. The forth way is going into ASU's solar power lab.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
As global population and demand for electrical power increase, humanity is faced with the growing challenge of harnessing and distributing enough energy to sustain the developing world. Currently, fossil fuels (coal atural gas) are our main sources of electricity. However, their…
As global population and demand for electrical power increase, humanity is faced with the growing challenge of harnessing and distributing enough energy to sustain the developing world. Currently, fossil fuels (coal atural gas) are our main sources of electricity. However, their cost is increasing, they are nonrenewable, and they are very harmful to the environment. Thus, capacity expansion in the renewable energy sector must be realized to offset higher energy demand and reduce dependence on fossil fuels. Solar energy represents a practical solution, as installed global solar capacity has been increasing exponentially over the past 2 decades. However, even with government incentives, solar energy price ($/kWh) continues to be highly dependent on political climate and raw material (silicon and silver) cost. To realistically and cost effectively meet the projected expansions within the solar industry, silver must be replaced with less costly and more abundant metals (such as copper) in the front-grid metallization process of photovoltaic cells. Copper, while offering both higher achievable efficiencies and a raw material cost nearly 100 times cheaper than silver, has inherent disadvantages. Specifically, copper diffuses rapidly into the silicon substrate, requires more complex and error-prone processing steps, and tends to have less adhesive strength, reducing panel robustness. In this study, nickel deposition via sputtering was analyzed, as well as overall potential of nickel as a seed layer for copper plating, which also provides a barrier layer to copper diffusion in silicon. Thermally-formed nickel silicide also reduces contact resistivity, increasing cell efficiency. It was found that at 400 \u00B0C, ideal nickel silicide formation occurred. By computer modeling, contact resistivity was found to have a significant impact on cell efficiency (up to 1.8%). Finally, sputtering proved useful to analyze nickel silicide formation, but costs and time requirements prevent it from being a practical industrial-scale metallization method.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require…
The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial viability of the system installations as well as the purchase price. The research was conducted using PPAs and historical solar power production data from the ASU's Energy Information System (EIS). The results indicate that most PPAs slightly underestimate the annual energy yield. However, the modeled power output from PVsyst indicates that higher energy outputs are possible with better system monitoring.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Wire connected solar cells are a promising new technology that can increase the efficiency and reduce the cost of solar modules. The use of wire rather than ribbon bus bars can lead to reduced shading, better light trapping, and reduced…
Wire connected solar cells are a promising new technology that can increase the efficiency and reduce the cost of solar modules. The use of wire rather than ribbon bus bars can lead to reduced shading, better light trapping, and reduced material costs, all while eliminating the need for soldering. This research first analyzes the optimal wire gauge to reduce cracking and improve efficiency. Wire sizes between 20 AWG and 28 AWG were tested, with the optimal size being between 24 AWG and 26 AWG for the ethylene vinyl acetate (EVA) layer used in the module. A polyethylene sheet was then added between the wires and EVA layer to prevent the EVA from running underneath the wires during lamination, ultimately allowing for a more uniform contact and only a slight reduction in quantum efficiency. Then, a comparison between tinned copper wires and indium coated copper wires is shown. A mini-module efficiency of 20.0% has been achieved using tinned copper wires, while indium coated copper wires have produced a mini-module efficiency of 21.2%. Thus, tinned copper wires can be a viable alternative to indium coated copper wires, depending on the needs of the customers and the current price of indium. The module design throughout the research utilizes a planar assembly method, which improves the ease of manufacturing for wire interconnection technology. A two-cell base component is constructed and shown, with the intended future application of making large wire connected modules. Finally, wire applications in both single-cell and four-cell flexible modules are explored, with an efficiency of 18.65% achieved on a single-cell, flexible, heterojunction solar module using wire interconnections. A fully flexible four-cell string is developed, and future recommendations for related research are included.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery…
The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only flight time of a quadcopter loaded with a solar array and increase that flight time by 33% with additional power provided by solar cells. The major concepts explored throughout this project are quadcopter functionality and capability and solar cell power production. In order to combine these technologies, the solar power and quadcopter components were developed and analyzed individually before connecting the solar array to the quadcopter circuit and testing the design as a whole. Several solar copter models were initially developed, resulting in multiple unique quadcopter and solar cell array designs which underwent preliminary testing before settling on a finalized design which proved to be the most effective and underwent final timed flight tests. Results of these tests are showing that the technologies complement each other as anticipated and highlight promising results for future development in this area, in particular the development of a drone running on solar power alone. Applications for a product such as this are very promising in many fields, including the industries of power, defense, consumer goods and services, entertainment, marketing, and medical. Also, becoming a more popular device for UAV hobbyists, such developments would be very appealing for leisure flying and personal photography purposes as well.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)