Reliability of Photovoltaic Cells with Plated Copper Electrodes

158708-Thumbnail Image.png
Description
An ongoing effort in the photovoltaic (PV) industry is to reduce the major manufacturing cost components of solar cells, the great majority of which are based on crystalline silicon (c-Si). This includes the substitution of screenprinted silver (Ag) cell contacts

An ongoing effort in the photovoltaic (PV) industry is to reduce the major manufacturing cost components of solar cells, the great majority of which are based on crystalline silicon (c-Si). This includes the substitution of screenprinted silver (Ag) cell contacts with alternative copper (Cu)-based contacts, usually applied with plating. Plated Cu contact schemes have been under study for many years with only minor traction in industrial production. One of the more commonly-cited barriers to the adoption of Cu-based contacts for photovoltaics is long-term reliability, as Cu is a significant contaminant in c-Si, forming precipitates that degrade performance via degradation of diode character and reduction of minority carrier lifetime. Cu contamination from contacts might cause degradation during field deployment if Cu is able to ingress into c-Si. Furthermore, Cu contamination is also known to cause a form of light-induced degradation (LID) which further degrades carrier lifetime when cells are exposed to light.

Prior literature on Cu-contact reliability tended to focus on accelerated testing at the cell and wafer level that may not be entirely replicative of real-world environmental stresses in PV modules. This thesis is aimed at advancing the understanding of Cu-contact reliability from the perspective of quasi-commercial modules under more realistic stresses. In this thesis, c-Si solar cells with Cu-plated contacts are fabricated, made into PV modules, and subjected to environmental stress in an attempt to induce hypothesized failure modes and understand any new vulnerabilities that Cu contacts might introduce. In particular, damp heat stress is applied to conventional, p-type c-Si modules and high efficiency, n-type c-Si heterojunction modules. I present evidence of Cu-induced diode degradation that also depends on PV module materials, as well as degradation unrelated to Cu, and in either case suggest engineering solutions to the observed degradation. In a forensic search for degradation mechanisms, I present novel evidence of Cu outdiffusion from contact layers and encapsulant-driven contact corrosion as potential key factors. Finally, outdoor exposures to light uncover peculiarities in Cu-plated samples, but do not point to especially serious vulnerabilities.
Date Created
2020
Agent

Characterization of Stress in Electroplated Copper

133488-Thumbnail Image.png
Description
Current solar cells use a silver-printed front grid for electron conduction. Unfortunately, silver is expensive, leading to research into alternative materials. Copper is the most viable but poses grain growth problems and stress problems silver does not. This paper has

Current solar cells use a silver-printed front grid for electron conduction. Unfortunately, silver is expensive, leading to research into alternative materials. Copper is the most viable but poses grain growth problems and stress problems silver does not. This paper has characterised the effects of proprietary additives, thickness of the copper film layer, current density, and grain growth on stress. Per Stoney's equation, increased thickness leads to decreased thickness. However, if the current density is too high, the plated copper will become porous. Grain growth, quantified by the ratio of the intensity of the (1 1 1) plane and the (2 0 0) plane, increases over time, thus increasing the ratio which further equations to increased stress. Future work would be gathering more data to further investigate the relationship between additives and stress, current densities and stress, and grain growth over time and stress.
Date Created
2018-05
Agent

Optimization of Front Contact Design on Nickel-Plated Si Solar Cells

134362-Thumbnail Image.png
Description
As global population and demand for electrical power increase, humanity is faced with the growing challenge of harnessing and distributing enough energy to sustain the developing world. Currently, fossil fuels (coal
atural gas) are our main sources of electricity. However, their

As global population and demand for electrical power increase, humanity is faced with the growing challenge of harnessing and distributing enough energy to sustain the developing world. Currently, fossil fuels (coal
atural gas) are our main sources of electricity. However, their cost is increasing, they are nonrenewable, and they are very harmful to the environment. Thus, capacity expansion in the renewable energy sector must be realized to offset higher energy demand and reduce dependence on fossil fuels. Solar energy represents a practical solution, as installed global solar capacity has been increasing exponentially over the past 2 decades. However, even with government incentives, solar energy price ($/kWh) continues to be highly dependent on political climate and raw material (silicon and silver) cost. To realistically and cost effectively meet the projected expansions within the solar industry, silver must be replaced with less costly and more abundant metals (such as copper) in the front-grid metallization process of photovoltaic cells. Copper, while offering both higher achievable efficiencies and a raw material cost nearly 100 times cheaper than silver, has inherent disadvantages. Specifically, copper diffuses rapidly into the silicon substrate, requires more complex and error-prone processing steps, and tends to have less adhesive strength, reducing panel robustness. In this study, nickel deposition via sputtering was analyzed, as well as overall potential of nickel as a seed layer for copper plating, which also provides a barrier layer to copper diffusion in silicon. Thermally-formed nickel silicide also reduces contact resistivity, increasing cell efficiency. It was found that at 400 \u00B0C, ideal nickel silicide formation occurred. By computer modeling, contact resistivity was found to have a significant impact on cell efficiency (up to 1.8%). Finally, sputtering proved useful to analyze nickel silicide formation, but costs and time requirements prevent it from being a practical industrial-scale metallization method.
Date Created
2017-05
Agent