This work presents a thorough analysis of reconstruction of global wave fields (governed by the inhomogeneous wave equation and the Maxwell vector wave equation) from sensor time series data of the wave field. Three major problems are considered. First, an…
This work presents a thorough analysis of reconstruction of global wave fields (governed by the inhomogeneous wave equation and the Maxwell vector wave equation) from sensor time series data of the wave field. Three major problems are considered. First, an analysis of circumstances under which wave fields can be fully reconstructed from a network of fixed-location sensors is presented. It is proven that, in many cases, wave fields can be fully reconstructed from a single sensor, but that such reconstructions can be sensitive to small perturbations in sensor placement. Generally, multiple sensors are necessary. The next problem considered is how to obtain a global approximation of an electromagnetic wave field in the presence of an amplifying noisy current density from sensor time series data. This type of noise, described in terms of a cylindrical Wiener process, creates a nonequilibrium system, derived from Maxwell’s equations, where variance increases with time. In this noisy system, longer observation times do not generally provide more accurate estimates of the field coefficients. The mean squared error of the estimates can be decomposed into a sum of the squared bias and the variance. As the observation time $\tau$ increases, the bias decreases as $\mathcal{O}(1/\tau)$ but the variance increases as $\mathcal{O}(\tau)$. The contrasting time scales imply the existence of an ``optimal'' observing time (the bias-variance tradeoff). An iterative algorithm is developed to construct global approximations of the electric field using the optimal observing times. Lastly, the effect of sensor acceleration is considered. When the sensor location is fixed, measurements of wave fields composed of plane waves are almost periodic and so can be written in terms of a standard Fourier basis. When the sensor is accelerating, the resulting time series is no longer almost periodic. This phenomenon is related to the Doppler effect, where a time transformation must be performed to obtain the frequency and amplitude information from the time series data. To obtain frequency and amplitude information from accelerating sensor time series data in a general inhomogeneous medium, a randomized algorithm is presented. The algorithm is analyzed and example wave fields are reconstructed.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Climate is a critical determinant of agricultural productivity, and the ability to accurately predict this productivity is necessary to provide guidance regarding food security and agricultural management. Previous predictions vary in approach due to the myriad of factors influencing agricultural…
Climate is a critical determinant of agricultural productivity, and the ability to accurately predict this productivity is necessary to provide guidance regarding food security and agricultural management. Previous predictions vary in approach due to the myriad of factors influencing agricultural productivity but generally suggest long-term declines in productivity and agricultural land suitability under climate change. In this paper, I relate predicted climate changes to yield for three major United States crops, namely corn, soybeans, and wheat, using a moderate emissions scenario. By adopting data-driven machine learning approaches, I used the following machine learning methods: random forest (RF), extreme gradient boosting (XGB), and artificial neural networks (ANN) to perform comparative analysis and ensemble methodology. I omitted the western US due to the region's susceptibility to water stress and the prevalence of artificial irrigation as a means to compensate for dry conditions. By considering only climate, the model's results suggest an ensemble mean decline in crop yield of 23.4\% for corn, 19.1\% for soybeans, and 7.8\% for wheat between the years of 2017 and 2100. These results emphasize potential negative impacts of climate change on the current agricultural industry as a result of shifting bio-climactic conditions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Efforts to treat prostate cancer have seen an uptick, as the world’s most commoncancer in men continues to have increasing global incidence. Clinically, metastatic prostate cancer is most commonly treated with hormonal therapy. The idea behind hormonal therapy is to reduce androgen…
Efforts to treat prostate cancer have seen an uptick, as the world’s most commoncancer in men continues to have increasing global incidence. Clinically, metastatic prostate cancer is most commonly treated with hormonal therapy. The idea behind hormonal therapy is to reduce androgen production, which prostate cancer cells require for growth. Recently, the exploration of the synergistic effects of the drugs used in hormonal therapy has begun. The aim was to build off of these recent advancements and further refine the synergistic drug model. The advancements I implement come by addressing biological shortcomings and improving the model’s internal mechanistic structure. The drug families being modeled, anti-androgens, and gonadotropin-releasing hormone analogs, interact with androgen production in a way that is not completely understood in the scientific community. Thus the models representing the drugs show progress through their ability to capture their effect on serum androgen. Prostate-specific antigen is the primary biomarker for prostate cancer and is generally how population models on the subject are validated. Fitting the model to clinical data and comparing it to other clinical models through the ability to fit and forecast prostate-specific antigen and serum androgen is how this improved model achieves validation. The improved model results further suggest that the drugs’ dynamics should be considered in adaptive therapy for prostate cancer.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA).
Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport…
Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA).
Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the focus is on flows in realistic urban geometry. Both deterministic and stochastic transport patterns are identified, as inertial Lagrangian coherent structures. For the deterministic case, the organizing structures are well defined and are extracted at different hours of a day to reveal the variability of coherent patterns. For the stochastic case, a random displacement model for fluid particles is formulated, and used to derive the governing equations for inertial particles to examine the change in organizing structures due to ``zeroth-order'' random noise. It is found that, (1) the Langevin equation for inertial particles can be reduced to a random displacement model; (2) using random noise based on inhomogeneous turbulence, whose diffusivity is derived from $k$-$\epsilon$ models, major coherent structures survive to organize local flow patterns and weaker structures are smoothed out due to random motion.
A study of three-dimensional Lagrangian coherent structures (LCS) near HKIA is then presented and related to previous developments of two-dimensional (2D) LCS analyses in detecting windshear experienced by landing aircraft. The LCS are contrasted among three independent models and against 2D coherent Doppler light detection and ranging (LIDAR) data. Addition of the velocity information perpendicular to the lidar scanning cone helps solidify flow structures inferred from previous studies; contrast among models reveals the intramodel variability; and comparison with flight data evaluates the performance among models in terms of Lagrangian analyses. It is found that, while the three models and the LIDAR do recover similar features of the windshear experienced by a landing aircraft (along the landing trajectory), their Lagrangian signatures over the entire domain are quite different - a portion of each numerical model captures certain features resembling those LCS extracted from independent 2D LIDAR analyses based on observations. Overall, it was found that the Weather Research and Forecast (WRF) model provides the best agreement with the LIDAR data.
Finally, the three-dimensional variational (3DVAR) data assimilation scheme in WRF is used to incorporate the LIDAR line of sight velocity observations into the WRF model forecast at HKIA. Using two different days as test cases, it is found that the LIDAR data can be successfully and consistently assimilated into WRF. Using the updated model forecast LCS are extracted along the LIDAR scanning cone and compare to onboard flight data. It is found that the LCS generated from the updated WRF forecasts are generally better correlated with the windshear experienced by landing aircraft as compared to the LIDAR extracted LCS alone, which suggests that such a data assimilation scheme could be used for the prediction of windshear events.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing.…
The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions.
For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for nonautonomous systems, a similar analysis can be done. Systems with general time dependencies must resort to using finite-time transport barriers for partitioning; these barriers are the edges of Lagrangian coherent structures (LCS), the analog to the stable and unstable manifolds of invariant manifold theory. Using the coherent structures of a flow to analyze the statistics of trapping, flight, and residence times, the signature of anomalous diffusion are obtained.
This research also investigates the use of linear models for approximating the elements of the covariance matrix of nonlinear flows, and then applying the covariance matrix approximation over coherent regions. The first and second-order moments can be used to fully describe an ensemble evolution in linear systems, however there is no direct method for nonlinear systems. The problem is only compounded by the fact that the moments for nonlinear flows typically don't have analytic representations, therefore direct numerical simulations would be needed to obtain the moments throughout the domain. To circumvent these many computations, the nonlinear system is approximated as many linear systems for which analytic expressions for the moments exist. The parameters introduced in the linear models are obtained locally from the nonlinear deformation tensor.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
An interesting occurrence of a Rossby wave breaking event observed during the VORCORE experiment is presented and explained. Twenty-seven balloons were launched inside the Antarctic polar vortex. Almost all of these balloons evolved in the stratosphere around 500K within the…
An interesting occurrence of a Rossby wave breaking event observed during the VORCORE experiment is presented and explained. Twenty-seven balloons were launched inside the Antarctic polar vortex. Almost all of these balloons evolved in the stratosphere around 500K within the vortex, except the one launched on 28 October 2005. In this case, the balloon was caught within a tongue of high potential vorticity (PV), and was ejected from the polar vortex. The evolution of this event is studied for the period between 19 and 25 November 2005. It is found that at the beginning of this period, the polar vortex experienced distortions due to the presence of Rossby waves. Then, these waves break and a tongue of high PV develops. On 25 November, the tongue became separated from the vortex and the balloon was ejected into the surf zone. Lagrangian simulations demonstrate that the air masses surrounding the balloon after its ejection were originating from the vortex edge. The wave breaking and the development of the tongue are confined within a region where a planetary Quasi-Stationary Wave 1 (QSW1) induces wind speeds with weaker values. The QSW1 causes asymmetry in the wind speed and the horizontal PV gradient along the edge of the polar vortex, resulting in a localized jet. Rossby waves with smaller scales propagating on top of this jet amplify as they enter the jet exit region and then break. The role of the QSW1 on the formation of the weak flow conditions that caused the non-linear wave breaking observed near the vortex edge is confirmed by three-dimensional numerical simulations using forcing with and without the contribution of the QSW1.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation…
A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation is modeled by numerically solving the Taylor-Goldstein equation, which governs the dynamics of internal waves in stably stratified shear flows. The waves are forced by a flow over a bell shaped mountain placed at the lower boundary of the domain. A perfectly radiating condition based on the group velocity of mountain waves is imposed at the top to avoid artificial wave reflection. A validation for the numerical method through comparisons with the corresponding analytical solutions will be provided. Then, the method is applied to more realistic profiles of the stability to study the impact of these profiles on wave propagation through the tropopause.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In this study, WRF-Chem is utilized at high resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O3]) for a pair of recent exceedance episodes. First,…
In this study, WRF-Chem is utilized at high resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O3]) for a pair of recent exceedance episodes. First, WRF-Chem control simulations, based on the US Environmental Protection Agency (EPA) 2005 National Emissions Inventories (NEI05), are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOX, and wind fields, the control simulations reproduce observed variability well. Simulated [O3] are comparable with the previous studies in this region. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ) to ozone exceedances within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1) SoCal emissions are excluded, with all other emissions as in Control; (2) AZ emissions are excluded with all other emissions as in Control; and (3) SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated) to account only for Biogenic emissions and lateral boundary inflow (BILB). Based on the USEPA NEI05, results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8) [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10–30 % relative to Control experiments). [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BILB contributions to DMA8 [O3] in Phoenix also play a key role.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Forecasts of noise pollution from a highway line segment noise source are obtained from a sound propagation model utilizing effective sound speed profiles derived from a Numerical Weather Prediction (NWP) limited area forecast with 1 km horizontal resolution and near-ground…
Forecasts of noise pollution from a highway line segment noise source are obtained from a sound propagation model utilizing effective sound speed profiles derived from a Numerical Weather Prediction (NWP) limited area forecast with 1 km horizontal resolution and near-ground vertical resolution finer than 20 m. Methods for temporal along with horizontal and vertical spatial nesting are demonstrated within the NWP model for maintaining forecast feasibility. It is shown that vertical nesting can improve the prediction of finer structures in near-ground temperature and velocity profiles, such as morning temperature inversions and low level jet-like features. Accurate representation of these features is shown to be important for modeling sound refraction phenomena and for enabling accurate noise assessment. Comparisons are made using the parabolic equation model for predictions with profiles derived from NWP simulations and from field experiment observations during mornings on November 7 and 8, 2006 in Phoenix, Arizona. The challenges faced in simulating accurate meteorological profiles at high resolution for sound propagation applications are highlighted and areas for possible improvement are discussed.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)