Wavelet-Based Multilevel Krylov Methods For Solving The Image Deblurring Problem

193502-Thumbnail Image.png
Description
In the realm of discrete ill-posed problems, image deblurring is a challenging problem aimed at restoring clear and visually appealing images from their blurred counterparts. Over the years, various numerical techniques have been developed to solve this problem, each offering

In the realm of discrete ill-posed problems, image deblurring is a challenging problem aimed at restoring clear and visually appealing images from their blurred counterparts. Over the years, various numerical techniques have been developed to solve this problem, each offering unique approaches to tackle blurring and noise.This thesis studies multilevel methods using Daubechies wavelets and Tikhonov regularization. The Daubechies wavelets are a family of orthogonal wavelets widely used in various fields because of their orthogonality and compact support. They have been widely applied in signal processing, image compression, and other applications. One key aspect of this investigation involves a comprehensive comparative analysis with Krylov methods, well-established iterative methods known for their efficiency and accuracy in solving large-scale inverse problems. The focus is on two well-known Krylov methods, namely hybrid LSQR and hybrid generalized minimal residual method \linebreak(GMRES). By contrasting the multilevel and Krylov methods, the aim is to discern their strengths and limitations, facilitating a deeper understanding of their applicability in diverse image-deblurring scenarios. Other critical comparison factors are the noise level adopted during the deblurring process and the amount of blur. To gauge their robustness and performance under different blurry and noisy conditions, this work explores how each method behaves with different noise levels from mild to severe and different amounts of blur from small to large. Moreover, this thesis combines multilevel and Krylov methods to test a new method for solving inverse problems. This work aims to provide valuable insights into the strengths and weaknesses of these multilevel Krylov methods by shedding light on their efficacy. Ultimately, the findings could have implications across diverse domains, including medical imaging, remote sensing, and multimedia applications, where high-quality and noise-free images are indispensable for accurate analysis and interpretation.
Date Created
2024
Agent

Stochastic Maxwell’s Equations: Robust Reconstruction of Wave Dynamics from Sensor Data and Optimal Observation Time

189213-Thumbnail Image.png
Description
This work presents a thorough analysis of reconstruction of global wave fields (governed by the inhomogeneous wave equation and the Maxwell vector wave equation) from sensor time series data of the wave field. Three major problems are considered. First, an

This work presents a thorough analysis of reconstruction of global wave fields (governed by the inhomogeneous wave equation and the Maxwell vector wave equation) from sensor time series data of the wave field. Three major problems are considered. First, an analysis of circumstances under which wave fields can be fully reconstructed from a network of fixed-location sensors is presented. It is proven that, in many cases, wave fields can be fully reconstructed from a single sensor, but that such reconstructions can be sensitive to small perturbations in sensor placement. Generally, multiple sensors are necessary. The next problem considered is how to obtain a global approximation of an electromagnetic wave field in the presence of an amplifying noisy current density from sensor time series data. This type of noise, described in terms of a cylindrical Wiener process, creates a nonequilibrium system, derived from Maxwell’s equations, where variance increases with time. In this noisy system, longer observation times do not generally provide more accurate estimates of the field coefficients. The mean squared error of the estimates can be decomposed into a sum of the squared bias and the variance. As the observation time $\tau$ increases, the bias decreases as $\mathcal{O}(1/\tau)$ but the variance increases as $\mathcal{O}(\tau)$. The contrasting time scales imply the existence of an ``optimal'' observing time (the bias-variance tradeoff). An iterative algorithm is developed to construct global approximations of the electric field using the optimal observing times. Lastly, the effect of sensor acceleration is considered. When the sensor location is fixed, measurements of wave fields composed of plane waves are almost periodic and so can be written in terms of a standard Fourier basis. When the sensor is accelerating, the resulting time series is no longer almost periodic. This phenomenon is related to the Doppler effect, where a time transformation must be performed to obtain the frequency and amplitude information from the time series data. To obtain frequency and amplitude information from accelerating sensor time series data in a general inhomogeneous medium, a randomized algorithm is presented. The algorithm is analyzed and example wave fields are reconstructed.
Date Created
2023
Agent

Impacts of Landscape Modifications on Urban Boundary Layer Dynamics in Current and Projected Climate

Description
The planetary boundary layer (PBL) is the lowest part of the troposphere and is directly influenced by surface forcing. Anthropogenic modification from natural to urban environments characterized by increased impervious surfaces, anthropogenic heat emission, and a three-dimensional building morphology, affects

The planetary boundary layer (PBL) is the lowest part of the troposphere and is directly influenced by surface forcing. Anthropogenic modification from natural to urban environments characterized by increased impervious surfaces, anthropogenic heat emission, and a three-dimensional building morphology, affects land-atmosphere interactions in the urban boundary layer (UBL). Ample research has demonstrated the effect of landscape modifications on development and modulation of the near-surface urban heat island (UHI). However, despite potential implications for air quality, precipitation patterns and aviation operations, considerably less attention has been given to impacts on regional scale wind flow. This dissertation, composed of three peer reviewed manuscripts, fills a fundamental gap in urban climate research, by investigating individual and combined impacts of urbanization, heat adaptation strategies and projected climate change on UBL dynamics. Paper 1 uses medium-resolution Weather Research and Forecast (WRF) climate simulations to assess contemporary and future impacts across the Conterminous US (CONUS). Results indicate that projected urbanization and climate change are expected to increase summer daytime UBL height in the eastern CONUS. Heat adaptation strategies are expected to reduce summer daytime UBL depth by several hundred meters, increase both daytime and nighttime static stability and induce stronger subsidence, especially in the southwestern US. Paper 2 investigates urban modifications to contemporary wind circulation in the complex terrain of the Phoenix Metropolitan Area (PMA) using high-resolution WRF simulations. The built environment of PMA decreases wind flow in the evening and nighttime inertial sublayer and produces a UHI-induced circulation of limited vertical extent that modulates the background flow. During daytime, greater urban sensible heat flux dampens the urban roughness-induced drag effect by promoting a deeper, more mixed UBL. Paper 3 extends the investigation to future scenarios showing that, overall, climate change is expected to reduce wind speed across the PMA. Projected increased soil moisture is expected to intensify katabatic winds and weaken anabatic winds along steeper slopes. Urban development is expected to obstruct nighttime wind flow across areas of urban expansion and increase turbulence in the westernmost UBL. This dissertation advances the understanding of regional-scale UBL dynamics and highlights challenges and opportunities for future research.
Date Created
2023
Agent

Data Assimilation and Uncertainty Quantification with Reduced-order Models

168448-Thumbnail Image.png
Description
High-dimensional systems are difficult to model and predict. The underlying mechanisms of such systems are too complex to be fully understood with limited theoretical knowledge and/or physical measurements. Nevertheless, redcued-order models have been widely used to study high-dimensional systems, because

High-dimensional systems are difficult to model and predict. The underlying mechanisms of such systems are too complex to be fully understood with limited theoretical knowledge and/or physical measurements. Nevertheless, redcued-order models have been widely used to study high-dimensional systems, because they are practical and efficient to develop and implement. Although model errors (biases) are inevitable for reduced-order models, these models can still be proven useful to develop real-world applications. Evaluation and validation for idealized models are indispensable to serve the mission of developing useful applications. Data assimilation and uncertainty quantification can provide a way to assess the performance of a reduced-order model. Real data and a dynamical model are combined together in a data assimilation framework to generate corrected model forecasts of a system. Uncertainties in model forecasts and observations are also quantified in a data assimilation cycle to provide optimal updates that are representative of the real dynamics. In this research, data assimilation is applied to assess the performance of two reduced-order models. The first model is developed for predicting prostate cancer treatment response under intermittent androgen suppression therapy. A sequential data assimilation scheme, the ensemble Kalman filter (EnKF), is used to quantify uncertainties in model predictions using clinical data of individual patients provided by Vancouver Prostate Center. The second model is developed to study what causes the changes of the state of stratospheric polar vortex. Two data assimilation schemes: EnKF and ES-MDA (ensemble smoother with multiple data assimilation), are used to validate the qualitative properties of the model using ECMWF (European Center for Medium-Range Weather Forecasts) reanalysis data. In both studies, the reduced-order model is able to reproduce the data patterns and provide insights to understand the underlying mechanism. However, significant model errors are also diagnosed for both models from the results of data assimilation schemes, which suggests specific improvements of the reduced-order models.
Date Created
2021
Agent

Modeling collective motion of complex systems using agent-based models & macroscopic models

157690-Thumbnail Image.png
Description
The main objective of mathematical modeling is to connect mathematics with other scientific fields. Developing predictable models help to understand the behavior of biological systems. By testing models, one can relate mathematics and real-world experiments. To validate predictions numerically, one

The main objective of mathematical modeling is to connect mathematics with other scientific fields. Developing predictable models help to understand the behavior of biological systems. By testing models, one can relate mathematics and real-world experiments. To validate predictions numerically, one has to compare them with experimental data sets. Mathematical modeling can be split into two groups: microscopic and macroscopic models. Microscopic models described the motion of so-called agents (e.g. cells, ants) that interact with their surrounding neighbors. The interactions among these agents form at a large scale some special structures such as flocking and swarming. One of the key questions is to relate the particular interactions among agents with the overall emerging structures. Macroscopic models are precisely designed to describe the evolution of such large structures. They are usually given as partial differential equations describing the time evolution of a density distribution (instead of tracking each individual agent). For instance, reaction-diffusion equations are used to model glioma cells and are being used to predict tumor growth. This dissertation aims at developing such a framework to better understand the complex behavior of foraging ants and glioma cells.
Date Created
2019
Agent

Magnetic resonance parameter assessment from a second order time-dependent linear model

157651-Thumbnail Image.png
Description
This dissertation develops a second order accurate approximation to the magnetic resonance (MR) signal model used in the PARSE (Parameter Assessment by Retrieval from Single Encoding) method to recover information about the reciprocal of the spin-spin relaxation time function (R2*)

This dissertation develops a second order accurate approximation to the magnetic resonance (MR) signal model used in the PARSE (Parameter Assessment by Retrieval from Single Encoding) method to recover information about the reciprocal of the spin-spin relaxation time function (R2*) and frequency offset function (w) in addition to the typical steady-state transverse magnetization (M) from single-shot magnetic resonance imaging (MRI) scans. Sparse regularization on an approximation to the edge map is used to solve the associated inverse problem. Several studies are carried out for both one- and two-dimensional test problems, including comparisons to the first order approximation method, as well as the first order approximation method with joint sparsity across multiple time windows enforced. The second order accurate model provides increased accuracy while reducing the amount of data required to reconstruct an image when compared to piecewise constant in time models. A key component of the proposed technique is the use of fast transforms for the forward evaluation. It is determined that the second order model is capable of providing accurate single-shot MRI reconstructions, but requires an adequate coverage of k-space to do so. Alternative data sampling schemes are investigated in an attempt to improve reconstruction with single-shot data, as current trajectories do not provide ideal k-space coverage for the proposed method.
Date Created
2019
Agent

Optimal sampling for linear function approximation and high-order finite difference methods over complex regions

157649-Thumbnail Image.png
Description
I focus on algorithms that generate good sampling points for function approximation. In 1D, it is well known that polynomial interpolation using equispaced points is unstable. On the other hand, using Chebyshev nodes provides both stable and highly accurate points

I focus on algorithms that generate good sampling points for function approximation. In 1D, it is well known that polynomial interpolation using equispaced points is unstable. On the other hand, using Chebyshev nodes provides both stable and highly accurate points for polynomial interpolation. In higher dimensional complex regions, optimal sampling points are not known explicitly. This work presents robust algorithms that find good sampling points in complex regions for polynomial interpolation, least-squares, and radial basis function (RBF) methods. The quality of these nodes is measured using the Lebesgue constant. I will also consider optimal sampling for constrained optimization, used to solve PDEs, where boundary conditions must be imposed. Furthermore, I extend the scope of the problem to include finding near-optimal sampling points for high-order finite difference methods. These high-order finite difference methods can be implemented using either piecewise polynomials or RBFs.
Date Created
2019
Agent

A High Order Numerical Scheme for Wave Propagation Problems

132633-Thumbnail Image.png
Description
The physics of waves control most of the world, in multiple forms, such as electromagnetic waves. Mathematicians and physicists have developed equations which describe the patterns in which waves evolve over time, while moving through space. Due to their partial

The physics of waves control most of the world, in multiple forms, such as electromagnetic waves. Mathematicians and physicists have developed equations which describe the patterns in which waves evolve over time, while moving through space. Due to their partial differential form, solutions to these equations must be approximated. This study introduces a new numerical scheme to perform the approximation which is highly stable and computationally efficient. This numerical scheme is formulated with respect to Maxwell’s equations, employing spatial and temporal staggering to implement a fourth-order phase accuracy. It is then compared to the traditional Yee scheme and the Runge-Kutta 3 scheme in one-dimensional applications, revealing a similar accuracy to the Runge-Kutta 3 scheme while requiring less computations per time step. Simulations are then performed in the two-dimensional case. First, no boundary conditions are implemented, causing reflection at the edge of the spatial domain. Next, the simulation is conducted while employing absorbing boundary conditions, simulating wave propagation over an infinite spatial domain. These results are compared to the results of a large domain simulation, in which the wave propagation does not reach the boundaries. Comparing the simulations, it is concluded that the numerical scheme is stable and highly accurate when employing absorbing boundary conditions. Finally, the scheme is tested in two dimensions with wave propagation through nonlinear media, as opposed to the prior simulations which were performed as if in a vacuum. After performing spectral analysis on the resulting waves after a long-time domain simulation, the resulting angular frequencies match those expected from theory. Therefore, the scheme is concluded to be powerful in one-dimensional, two-dimensional, and nonlinear simulations, all while being computationally efficient.
Date Created
2019-05
Agent

Spatio-temporal statistical modeling: climate impacts due to bioenergy crop expansion

156722-Thumbnail Image.png
Description
Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switch-

grass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial

Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switch-

grass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping systems has been shown to reduce near-surface temperatures, unintended consequences on natural water resources via depletion of soil moisture may offset these benefits. In the effort of the cross-fertilization across the disciplines of physics-based modeling and spatio-temporal statistics, three topics are investigated in this dissertation aiming to provide a novel quantification and robust justifications of the hydroclimate impacts associated with bioenergy crop expansion. Topic 1 quantifies the hydroclimatic impacts associated with perennial bioenergy crop expansion over the contiguous United States using the Weather Research and Forecasting Model (WRF) dynamically coupled to a land surface model (LSM). A suite of continuous (2000–09) medium-range resolution (20-km grid spacing) ensemble-based simulations is conducted. Hovmöller and Taylor diagrams are utilized to evaluate simulated temperature and precipitation. In addition, Mann-Kendall modified trend tests and Sieve-bootstrap trend tests are performed to evaluate the statistical significance of trends in soil moisture differences. Finally, this research reveals potential hot spots of suitable deployment and regions to avoid. Topic 2 presents spatio-temporal Bayesian models which quantify the robustness of control simulation bias, as well as biofuel impacts, using three spatio-temporal correlation structures. A hierarchical model with spatially varying intercepts and slopes display satisfactory performance in capturing spatio-temporal associations. Simulated temperature impacts due to perennial bioenergy crop expansion are robust to physics parameterization schemes. Topic 3 further focuses on the accuracy and efficiency of spatial-temporal statistical modeling for large datasets. An ensemble of spatio-temporal eigenvector filtering algorithms (hereafter: STEF) is proposed to account for the spatio-temporal autocorrelation structure of the data while taking into account spatial confounding. Monte Carlo experiments are conducted. This method is then used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.
Date Created
2018
Agent

Local Ensemble Transform Kalman Filter for earth-system models: an application to extreme events

156637-Thumbnail Image.png
Description
Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data

assimilation

Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data

assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is

applied to the ionosphere, which is a domain of practical interest due to its effects

on infrastructures that depend on satellite communication and remote sensing. This

dissertation consists of three main studies that propose strategies to improve space-

weather specification during ionospheric extreme events, but are generally applicable

to Earth-system models:

Topic I applies the LETKF to estimate ion density with an idealized model of

the ionosphere, given noisy synthetic observations of varying sparsity. Results show

that the LETKF yields accurate estimates of the ion density field and unobserved

components of neutral winds even when the observation density is spatially sparse

(2% of grid points) and there is large levels (40%) of Gaussian observation noise.

Topic II proposes a targeted observing strategy for data assimilation, which uses

the influence matrix diagnostic to target errors in chosen state variables. This

strategy is applied in observing system experiments, in which synthetic electron density

observations are assimilated with the LETKF into the Thermosphere-Ionosphere-

Electrodynamics Global Circulation Model (TIEGCM) during a geomagnetic storm.

Results show that assimilating targeted electron density observations yields on

average about 60%–80% reduction in electron density error within a 600 km radius of

the observed location, compared to 15% reduction obtained with randomly placed

vertical profiles.

Topic III proposes a methodology to account for systematic model bias arising

ifrom errors in parametrized solar and magnetospheric inputs. This strategy is ap-

plied with the TIEGCM during a geomagnetic storm, and is used to estimate the

spatiotemporal variations of bias in electron density predictions during the

transitionary phases of the geomagnetic storm. Results show that this strategy reduces

error in 1-hour predictions of electron density by about 35% and 30% in polar regions

during the main and relaxation phases of the geomagnetic storm, respectively.
Date Created
2018
Agent