Potential Induced Degradation (PID) of Photovoltaic Modules: Influence of Superstrate, Encapsulant and Substrate

189218-Thumbnail Image.png
Description
Solar photovoltaic (PV) generation has seen significant growth in 2021, with an increase of around 22% and exceeding 1000 TWh. However, this has also led to reliability and durability issues, particularly potential induced degradation (PID), which can reduce module output

Solar photovoltaic (PV) generation has seen significant growth in 2021, with an increase of around 22% and exceeding 1000 TWh. However, this has also led to reliability and durability issues, particularly potential induced degradation (PID), which can reduce module output by up to 30%. This study uses cell- and module-level analysis to investigate the impact of superstrate, encapsulant, and substrate on PID.The influence of different substrates and encapsulants is studied using one-cell modules, showing that substrates with poor water-blocking properties can worsen PID, and encapsulants with lower volumetric resistance can conduct easily under damp conditions, enabling PID mechanisms (results show maximum degradation of 9%). Applying an anti-soiling coating on the front glass (superstrate) reduces PID by nearly 53%. Typical superstrates have sodium which accelerates the PID process, and therefore, using such coatings can lessen the PID problem. At the module level, the study examines the influence of weakened interface adhesion strengths in traditional Glass-Backsheet (GB) and emerging Glass-Glass (GG) (primarily bifacial modules) constructions. The findings show nearly 64% more power degradation in GG modules than in GB. Moreover, the current methods for detecting PID use new modules, which can give inaccurate information instead of DH-stressed modules for PID testing, as done in this work. A comprehensive PID susceptibility analysis for multiple fresh bifacial constructions shows significant degradation from 20 to 50% in various constructions. The presence of glass as the substrate exacerbates the PID problem due to more ionic activity available from the two glass sides. Recovery experiments are also conducted to understand the extent of the PID issue. Overall, this study identifies, studies, and explains the impact of superstrate, substrate, and encapsulant on the underlying PID mechanisms. Various pre- and post-stress characterization tests, including light and dark current-voltage (I-V) tests, electroluminescence (EL) imaging, infrared (IR) imaging, and UV fluorescence (UVF) imaging, are used to evaluate the findings. This study is significant as it provides insights into the PID issues in solar PV systems, which can help improve their performance and reliability.
Date Created
2023
Agent