Both molecular structure of macromolecular materials and subsequent processing of these materials dictate resulting material properties. In this work novel synthetic strategies combined with detailed analytical methodology reveal fundamental structure-processing-property relationships in thermoplastic polyesters, thermoplastic polyurethanes, covalently crosslinked acetal functionalized…
Both molecular structure of macromolecular materials and subsequent processing of these materials dictate resulting material properties. In this work novel synthetic strategies combined with detailed analytical methodology reveal fundamental structure-processing-property relationships in thermoplastic polyesters, thermoplastic polyurethanes, covalently crosslinked acetal functionalized networks, and small molecule surfactants. 4,4’ dimethyloxybisbenzoate afforded a series of novel polyester structures, and the incorporation of this monomer both increased the Tg and decreased the crystallinity in cyclohexane dimethanol based polyesters. Solubility and dynamic light scattering experiments combined with oscillatory rheology techniques provided methodology to validate polyurethane extrusion in commercial polyurethanes. Acid catalyzed hydroxyl addition to vinyl ethers provided two families of acetal functionalized poly(ethylene glycol hydrogels). Stoichiometric control of binary thiol-acrylate polymerizations afforded hydrogels with both tunable mechanical properties and predictable degradation profiles. Following this work, a photoacid generator catalyzed cationic catalysis provided acetal functionalized organogels whose mechanical properties were predicted by excess vinyl ether monomers which underwent cationic polymerization under the same reaction conditions that yielded acetal functionalization. Time resolved FT-IR spectroscopy provided new understanding in hydroxyl vinyl ether reactions, where both hydroxyl addition to a vinyl ether and vinyl ether cationic polymerization occur concurrently. This work inspired research into new reactive systems for photobase generator applications. However, current photobase generator technologies proved incompatible for carbon-Michael reactions between acetoacetate and acrylate functionalities as a result of uncontrollable acrylate free radical polymerization. The fundamental knowledge and synthetic strategies afforded by these investigations were applied to small molecule surfactant systems for fire-fighting applications. Triethylsilyl-containing zwitterionic and cationic surfactants displayed surface tensions lower than hydrocarbon surfactants, but larger than siloxane-containing surfactants. For the first time, oscillatory rheology and polarized optical light imagine rheology highlighted shear-induced micelle alignment in triethylsilyl surfactants, which provided more stable foams than zwitterionic analogues. The knowledge gained from these investigations provided fundamental structure-processing-property relationships in small molecule surfactant solutions applied as fire-fighting foams. This discovery regarding the effect of self-assembled structures in foam solutions informs the design and analysis of next generation surfactants to replace fluorocarbon surfactants in fire-fighting foam applications.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
High-performance polymers (HPPs) have dominated the synthetic polymer market for critical applications, including aerospace, energy, microelectronic, and transportation industries since their development in the mid-1900s. Although their structures share general similarities, such as high aromatic content, HPPs offer wide structural…
High-performance polymers (HPPs) have dominated the synthetic polymer market for critical applications, including aerospace, energy, microelectronic, and transportation industries since their development in the mid-1900s. Although their structures share general similarities, such as high aromatic content, HPPs offer wide structural variance providing amorphous and semi-crystalline systems. As a result, conventional processing methods employed for HPPs are energy intensive and accessible part geometry is limited; often requiring subsequent subtractive techniques, i.e.,; milling, to obtain high quality and performant parts. Traditional processes were challenged by the emergence of advanced manufacturing techniques, such as 3D printing, which spurred significant academic and industrial interest. In the first project, poly(arylene ether sulfone)s (PSU) were chemically modified post-polymerization to enable ensuing photopolymerization of high molecular weight (Mn) PSU solutions into complex shapes with vat photopolymerization (VP). The resulting materials exhibited fast crosslinking, but low and unstable plateau storage moduli (G’). To overcome this, addition of low molecular weight crosslinker and precise control of UV irradiation increased crosslink density and inhibited photodegradation events, respectively. Ultimately, these modifications facilitated the first report of PSU structures fabricated with a UV-assisted AM modality. Next, 3D printable polyimides (PIs) were synthesized and extensively characterized to further expand the HPP AM toolbox. However, fully aromatic PIs pose a significant challenge as most are insoluble, intractable, and lack any discernable viscous flow. AM PIs were produced using two distinct approaches previously reported in the Long research group; the pendant salt approach imparts photoreactivity through the neutralization of the poly(amic acid) intermediate with small molecule amino-acrylates while the polysalt approach employs dicarboxylate-diammonium ionic organization to template the PI amongst an acrylic scaffold. Through the pendant salt approach, water soluble PI precursors enabled facile AM of complex structures, which served as efficient carbon precursors. The polysalt approach offers superior solid content and solution viscosities; however, these highly polar solutions initially exhibited deleterious side reactions. Application of acid-base fundamentals provided novel printable polysalt solutions with extended shelf-life, reproducible printing, and simplified processing. The relationships established from these projects expanded the applications of the most performant synthetic polymers and will inform future polymer design for additive manufacturing.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
With increasing advance complexity in the structure to be 3D printed, the use of post processing removal of support structures has become more complicated thing due to the need of newer tool case to remove supports in such scenarios. Attempts…
With increasing advance complexity in the structure to be 3D printed, the use of post processing removal of support structures has become more complicated thing due to the need of newer tool case to remove supports in such scenarios. Attempts have been made to study, research and experiment the dissolvable and recyclable photo-initiated polymeric resin that can be used to build support structure. Vat photo-polymerization method of manufacturing was selected due to wide range of materials that can be selected and researched which can have the potential to be selected further for large scale manufacturing. Deep understanding of the recyclable polymer was done by performing chemical and mechanical property test. Varying light intensities are used to study the curing properties and respective dissolving properties. In this thesis document, recyclable and dissolvable polymeric resin have been selected to print the support structures which can be later dissolved and recycled.The resin was exposed to varying light projections using grayscales of 255, 200 and 150 showing different dissolving time of each structure. Dissolving time of the printed parts were studied by varying the surface to volume ratios of the part. Higher the surface to volume ratios of the printed part resulted in lower time it takes to dissolve the part in the dissolving solution. The mechanical strengths of the recycled part were found to be pretty solid as compared to the freshly prepared resin, good sign of using it for multiple times without degrading its strength. Cactus shaped model was printed using commercial red resin and supports with the recyclable solution to deeply understand the working and dissolving properties of recyclable resin. Without any external efforts, the supports were easily dissolved in the solution, leaving the cactus intact. Further work is carried on printing Meta shaped gyroid lattice structure in effort to lower the dissolving time of the supports while maintaining enough mechanical stress. Future efforts will be made to conduct the rheology test and further lower the dissolving time as much it can to be ready for the commercial large scale applications.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
There are limited analyses of the properties of segmented ionenes on the influence of the type, structure, content of soft/hard segments, and type of counterions through direct comparisons, which are needed for a diverse set of applications. This dissertation research…
There are limited analyses of the properties of segmented ionenes on the influence of the type, structure, content of soft/hard segments, and type of counterions through direct comparisons, which are needed for a diverse set of applications. This dissertation research focuses on resolving the gaps in the structure-property-function relationship of segmented ionenes. First, the synthesis of novel segmented ionenes using step-growth polymerization via the Menshutkin reaction of ditertiary amines and alkyl dihalides was performed with PEG soft segment with three different content of soft/hard segments, 25, 50, and 75 wt%, and two different hard segments, linear aliphatic and heterocyclic aliphatic hard segments. The content of the soft segment influenced the degree of phase separation and ionic aggregation which affected the thermomechanical properties of segmented ionenes. In addition, the crystallization of the soft segment influenced the mechanical properties of the ionenes. Second, the effect of the type of the soft segment was investigated by analyzing the novel PTMO-based segmented ionenes possessing three different content of soft/hard segments, as well as two different hard segments. The heterocyclic aliphatic hard segment provided a better degree of phase separation compared to the linear aliphatic hard segment irrespective of the type of soft segment, PEG, or PTMO. Moreover, the type and content of hard segments not only affected the thermal and mechanical properties but also the morphology of the segmented ionenes significantly that even inducing an ordered morphology. Third, the counter-anion metathesis was performed with PEG- and PTMO-based segmented ionenes possessing two structurally different hard segments to investigate the effect of the type of counter-anions with a direct comparison of the type of soft and hard segments. The type of counterion significantly influenced the thermomechanical properties of the segmented ionenes, and the degree of phase separation of different types of counter-anions was dependent on the type of soft and hard segments. The results of this dissertation provide fundamental insights into the correlations between each factor that influences the properties of the segmented ionenes and enable the design of segmented ionenes for a diverse range of applications.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Creating 3D objects out of high performance polymers, such as polyimides, is notoriously difficult since the highly stable polymer backbone limits processibility without extreme conditions. However, designing the polyimide precursor to crosslink upon photoirradiation enables the additive manufacturing of polyimides…
Creating 3D objects out of high performance polymers, such as polyimides, is notoriously difficult since the highly stable polymer backbone limits processibility without extreme conditions. However, designing the polyimide precursor to crosslink upon photoirradiation enables the additive manufacturing of polyimides into complex, 3D objects. Crosslinking the photoactive polyimide precursor forms a solid 3D organogel, then subsequent thermal treatment removes the sacrificial scaffold and simultaneously imidizes the precursor into a 3D polyimide. The collaborative efforts of the Long and Williams group at Virginia Tech created three chemically distinct photoactive polyimide precursors to additively manufacture 3D polyimide objects for aerospace applications and to maintain the nuclear stockpile. The first chapter of this dissertation introduces fully aromatic polyimides and the additive manufacturing techniques used to print photoactive polyimide precursors. The second chapter reviews the common pore forming methods typically utilized to develop porous polyimides for low dielectric applications. The following chapters investigate the impact of the sacrificial scaffold on the thermo-oxidative aging behavior of the polyimide precursors after imidization, then focuses on lowering the imidization temperature of the polyimide precursor using base catalysis. These investigations lead to the creation of photoactive polysalts with polyethylene glycol (PEG) side chains to develop 3D, porous polyimides with tunable morphologies. Varying the molecular weight and concentration of the PEG side chains along the backbone tuned the pore size, and the photoactive nature of the polyimide precursor enabled 3D, porous polyimides printed using digital light processing.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The excessive use of fossil fuels over the last few centuries has led to unprecedented changes in climate and a steady increase in the average surface global temperatures. Direct Air Capture(DAC) aims to capture CO2 directly from the atmosphere and…
The excessive use of fossil fuels over the last few centuries has led to unprecedented changes in climate and a steady increase in the average surface global temperatures. Direct Air Capture(DAC) aims to capture CO2 directly from the atmosphere and alleviate some of the adverse effects of climate change. This dissertation focuses on methodologies to make advanced functional materials that show good potential to be used as DAC sorbents. Details on sorbent material synthesis and post-synthesis methods to obtain high surface area morphologies are described in detail. First, by incorporating K2CO3 into activated carbon (AC) fiber felts, the sorption kinetics was significantly improved by increasing the surface area of K2CO3 in contact with air. The AC-K2CO3 fiber composite felts are flexible, cheap, easy to manufacture, chemically stable, and show excellent DAC capacity and (de)sorption rates, with stable performance up to ten cycles. The best composite felts collected an average of 478 µmol of CO2 per gram of composite during 4 h of exposure to ambient (24% RH) air that had a CO2 concentration of 400-450 ppm over 10 cycles. Secondly, incorporating the amino acid L-arginine (L-Arg) into a poly(vinyl alcohol) (PVA) nanofiber support structure, created porous substrates with very high surface areas of L-Arg available for CO2 sorption. The bio-inspired PVA-Arg nanofiber composites are flexible and show excellent DAC performance compared to bulk L-Arg. The nanofiber composites are fabricated from an electrospinning process using an aqueous polymer solution. High ambient humidity levels improve sorption performance significantly. The best performing nanofiber composite collected 542 µmol of CO2 per gram of composite during 2 h of exposure to ambient, high humidity (100% RH) air that had a CO2 concentration of 400-450 ppm. Finally, poly(vinyl guanidine) (PVG) polymer was synthesized and tested for sorption performance. The fabrication of PVG nanofibers, divinyl benzene crosslinked PVG beads and glutaraldehyde crosslinked PVG were demonstrated. The sorption performance of the fabricated sorbents were tested with the glutaraldehyde crosslinked PVG having a dynamic sorption capacity of over 1 mmol of CO2 per gram of polymer in 3 h. The sorption capability of liquid PVG was also explored.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
My thesis, Design of Hierarchically Porous Materials Containing Covalent Organic Frameworks, focuses on testing the validity of incorporating nanoporous organic materials into macroporous scaffolding to improve the functionality of covalent organic frameworks as materials for filtration applications. The macroporous scaffold…
My thesis, Design of Hierarchically Porous Materials Containing Covalent Organic Frameworks, focuses on testing the validity of incorporating nanoporous organic materials into macroporous scaffolding to improve the functionality of covalent organic frameworks as materials for filtration applications. The macroporous scaffold was based off of a material recently described in literature and the bulk of the experimentation was focused on the effects of the necessary processing for the creation of the macroporous material on the structure of the covalent organic frameworks. The property primarily investigated was the Brunauer-Emmett-Teller surface area, as the applicability of the frameworks is largely determined by their nanoporous surface area.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Using DFT calculations and GAMESS computational software, porphine and its derivatives were analyzed for unique sites to accept the adsorbates As(III), As(V) and P(V) in order to compare resulting adsorption energies and determine if any of these molecules prefer arsenic…
Using DFT calculations and GAMESS computational software, porphine and its derivatives were analyzed for unique sites to accept the adsorbates As(III), As(V) and P(V) in order to compare resulting adsorption energies and determine if any of these molecules prefer arsenic oxyanions over phosphate. Pure porphine preferred As(III) over P(V) with a resulting adsorption energy of -0.7974 eV. Of the functionalized porphyrins tested, carboxyl porphyrin preferred As(V) over P(V) with a total adsorption energy of -0.7345 eV. Ethyl, methyl, chlorine and amino porphyrin all preferred As(III), with energies of -0.7934, -0.8239, -0.7602, and -0.8508 eV, respectively. Of the metalated porphyrins tested, copper and vanadium porphyrin preferred As(V) over P(V) with adsorption energies of -0.7645 and -2.0915 eV. Chromium, iron and magnesium porphyrin all preferred As(III) over P(V) with energies of -0.5993, -1.4539, and - 1.0790 eV, respectively.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Plastic consumption has reached astronomical amounts. The issue is the single-use plastics that continue to harm the environment, degrading into microplastics that find their way into our environment. Finding sustainable, reliable, and safe methods to break down plastics is a…
Plastic consumption has reached astronomical amounts. The issue is the single-use plastics that continue to harm the environment, degrading into microplastics that find their way into our environment. Finding sustainable, reliable, and safe methods to break down plastics is a complex but valuable endeavor. This research aims to assess the viability of using biochar as a catalyst to break down polyethylene terephthalate (PET) plastics under hydrothermal liquefaction conditions. PET is most commonly found in single-use plastic water bottles. Using glycolysis as the reaction, biochar is added and assessed based on yield and time duration of the reaction. This research suggests that temperatures of 300℃ and relatively short experimental times were enough to see the complete conversion of PET through glycolysis. Further research is necessary to determine the effectiveness of biochar as a catalyst and the potential of process industrialization to begin reducing plastic overflow.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Polyolefins have dominated global polymer production for the past 60 years, revolutionizing fields of medicine, construction, travel, packaging, and many more. However, with steadily increasing polyolefin production each year and traditionally long polyethylene (PE) and polypropylene degradation times, estimated on…
Polyolefins have dominated global polymer production for the past 60 years, revolutionizing fields of medicine, construction, travel, packaging, and many more. However, with steadily increasing polyolefin production each year and traditionally long polyethylene (PE) and polypropylene degradation times, estimated on the order of 500 years or more, a massive challenge arises with accumulating plastic waste. While the end-of-life of polyolefins previously manufactured must be addressed, incorporation of sustainability and circularity into future commodity plastic design at the molecular level offers an opportunity to decrease their negative effects on the environment going forward. Herein, several approaches are described which aim to address the need for polymeric materials while introducing a sustainable approach to their design, either through incorporation of biosynthesized polymers or degradable units. In the first project, polymer blends of two biodegradable polymers were studied, and compared to the same blends containing a graft copolymer compatibilizer comprised of the two homopolymer counterparts. The compatibilized blends were expected to have superior mechanical performance to the uncompatibilized blend and potentially offer industrially relevant benefits. While this was not achieved, valuable insight into the polymer blend interactions were gained. The idea of compatibilizing polymer blends was further explored with blends of PE and a cellulose derivative with the aid of a custom ABA triblock compatibilizing agent. It was discovered that the compatibilizer reinforced the polymer blend by providing mechanical strength at the cost of flexibility. To approach sustainability from a different perspective, several segmented copolymer series based on telechelic PE oligomers were then synthesized and analyzed. The segmented systems exhibited similar structure to high density PE (HDPE), retained similar mechanical and thermal properties to commercial HDPE, but contained degradable units throughout the polymer backbone. Several fundamental principles were explored through the segmented and chain-extended polyolefin architecture, including the influence of reactive linkage (amide vs. ester), random vs. alternating segment structure, and PE segment molecular weight. The effects of tailoring polymer structure on thermal, mechanical, and morphological properties are described herein. The relationships established from these experiments may further guide future polymer design and contribute toward more sustainable polyolefin manufacturing.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)