Electrically Assisted Vat Photopolymerization 3D Printing of Bioinspired Hierarchical Structures with Controllable Roughness for Hydrophobicity Enhancement

171439-Thumbnail Image.png
Description
Biomimetics is a field where natural and biological systems are replicated in a lab. The evolved hierarchical designs of the floating leaves of the water fern Salvinia Molesta are taken as inspiration as they reveal excellent dual scale roughness capability

Biomimetics is a field where natural and biological systems are replicated in a lab. The evolved hierarchical designs of the floating leaves of the water fern Salvinia Molesta are taken as inspiration as they reveal excellent dual scale roughness capability which also presents superhydrophobic properties in the nature. The microscale eggbeater-shaped hairs are coated with microscopic granules and nanoscopic wax crystals (dual-scale roughness) and wrinkled hydrophilic patches are coated with wax crystals which are evenly distributed on the terminal of each hair. The combination of features with diverse wettability, such as wrinkled hydrophilic patches atop superhydrophobic eggbeater hairs, makes such structures unique. The hydrophilic patches bind the air-water interface to the tips of the eggbeater hairs and inhibit air bubble formation. Salvinia effect of several Salvinia species has been extensively researched. Superhydrophobicity is attracting increasing attention for various applications. Salvinia exhibit multiscale roughness because of the unique combination of smooth hydrophilic patches on elastic eggbeater structures decorated with nanoscopic wax crystals. However, how to reproduce such hierarchical structures with controllable surface roughness is challenging for current fabrication approaches, which hinders the applications of these superhydrophobic properties as well as multi-scale roughness on surfaces in engineered products.The objective of this research is to fabricate and study the superhydrophobic structures using electrically assisted Vat Photopolymerization. In this project, an electrically assisted Vat Photopolymerization 3D printing (e-VPP-3DP) process was developed to control the surface roughness of printed eggbeater structures with distribution of multi walled carbon nanotubes (MWCNTs) for multi scale roughness. Vat Photopolymerization (VPP) is a Photopolymerization technique where a Photo Curable resin is used to rapidly produce dense photopolymer parts. A fundamental understanding of e-VPP technique to create superhydrophobic structures was studied to identify the relation between geometric morphology and mechanical enhancements of these structures. The correlation between the material properties for different weight percentage mixtures of MWCNT, printing parameters and the mechanical properties like attaching forces, surface roughness and superhydrophobic nature are also identified with this study on bioinspired hierarchical structures.
Date Created
2022
Agent

3D printed Bioactive Scaffolds for Tissue Repair and Drug Delivery

171360-Thumbnail Image.png
Description
Combining 3D bio-printing and drug delivery are promising techniques tofabricate scaffolds with well controlled and patient-specific structures for tissue engineering. In this study, silk derivatives of bioink were developed consisting of silk fibroin and gelatin then 3D printed into scaffolds. The scaffolds

Combining 3D bio-printing and drug delivery are promising techniques tofabricate scaffolds with well controlled and patient-specific structures for tissue engineering. In this study, silk derivatives of bioink were developed consisting of silk fibroin and gelatin then 3D printed into scaffolds. The scaffolds would be evaluated for small molecule release, cell growth, degradation, and morphology. Preparations and design of the scaffolds are major parts of engineering and tissue engineering. Scaffolds are designed to mimic extracellular matrix by providing structural support as well as promoting cell attachment and proliferation with minimum inflammation while degrading at a controlled rate. Scaffolds offers new potentials in medicine by aiding in the preparation of personalized and controlled release therapeutic systems.
Date Created
2022
Agent

Nonisothermal Melt Crystallization Behavior of Semicrystalline Polymers
Monitored Using an In Situ Fluorescence Technique

164183-Thumbnail Image.png
Description
Upon cooling a semicrystalline polymer from its amorphous melt state, it undergoes melt crystallization where organized microstructures develop through a process of nucleation and crystal growth. Understanding the crystallization kinetics of a semicrystalline thermoplastic is key to tuning crystallinity and

Upon cooling a semicrystalline polymer from its amorphous melt state, it undergoes melt crystallization where organized microstructures develop through a process of nucleation and crystal growth. Understanding the crystallization kinetics of a semicrystalline thermoplastic is key to tuning crystallinity and microstructure, which play integral roles in the material’s final properties such as toughness, gas permeability, and degradation rate. Nonisothermal crystallization, in particular, has great technological relevance to polymer engineering processes such as injection molding, film blowing, and fiber spinning, all of which rely on fast cooling rates. Spectroscopic, scattering, calorimetric, and rheological techniques have been conventionally used for studying nonisothermal crystallization, but can be limited in their sensitivity, tunability, and availability. Our group has recently developed a fluorescence technique for sensing the melting transitions of semicrystalline thermoplastics by incorporating fluorescent probes into polymer matrices. Herein, this methodology has been extended to an in-situ study of nonisothermal melt crystallization by monitoring the T-dependent fluorescence intensity of the fluorophores incorporated into a polymer matrix. As crystals form upon cooling from the amorphous melt state, the intramolecular motions of fluorophores are restricted and thus their T-dependent fluorescence intensity data exhibit a stepwise increase during nonisothermal crystallization. The first derivative of the T-dependent fluorescence intensity data can provide insight into the onset, peak, and endset crystallization temperatures, all of which align reasonably well with conventional differential scanning calorimetry measurements. This facile, sensitive, and contact-free fluorescence technique can access faster cooling rates (up to ~100 oC min-1) than many other existing methods for nonisothermal crystallization studies, which is more relevant to industrial polymer processing conditions. Additionally, the fluorescence detection mechanism shows great sensitivity not only to the degree of crystallinity but also to the crystalline microstructure formed during nonisothermal crystallization. Furthermore, unique fluorescent labeling is expected to foster novel studies on the local crystallization within heterogeneous polymeric systems including blends, composites, and multilayer films. Such local crystallization studies are out of reach for most conventional techniques that measure spatially averaged properties. Overall, this nonisothermal crystallization study expands the capabilities of this novel fluorescence technique for advancing the field of semicrystalline thermoplastic design and processing.
Date Created
2022-05
Agent

Synthesis, Characterization and Oxygen Adsorption Properties of Substituted Aluminophosphate (AlPO4-5, AFI) Zeolites

161946-Thumbnail Image.png
Description
The objective of this research was to develop Aluminophosphate-five (AlPO4-5, AFI) zeolite adsorbents for efficient oxygen removal from a process stream to support an on-going Department of Energy (DOE) project on solar energy storage. A molecular simulation study predicted that

The objective of this research was to develop Aluminophosphate-five (AlPO4-5, AFI) zeolite adsorbents for efficient oxygen removal from a process stream to support an on-going Department of Energy (DOE) project on solar energy storage. A molecular simulation study predicted that substituted AlPO4-5 zeolite can adsorb O2 through a weak chemical bond at ambient temperature. Substituted AlPO4-5 zeolite was successfully synthesized via hydrothermal crystallization by following carefully designed procedures to tailor the zeolite for efficient O2 adsorption. Synthesized AlPO4-5 in this work included Sn/AlPO-5, Mo/AlPO-5, Pd/AlPO-5, Si/AlPO-5, Mn/AlPO-5, Ce/AlPO-5, Fe/AlPO-5, CuCe/AlPO-5, and MnSnSi/AlPO-5. While not all zeolite samples synthesized were fully characterized, selected zeolite samples were characterized by powder x-ray diffraction (XRD) for crystal structure confirmation and phase identification, and nitrogen adsorption for their pore textural properties. The Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution were between 172 m2 /g - 306 m2 /g and 6Å - 9Å, respectively, for most of the zeolites synthesized. Samples of great interest to this project such as Sn/AlPO-5, Mo/AlPO-5 and MnSnSi/AlPO-5 were also characterized using x-ray photoelectron spectroscopy (XPS) and energy-dispersive x-ray spectroscopy (EDS) for elemental analysis, scanning electron microscopy (SEM) for morphology and particle size estimation, and electron paramagnetic resonance (EPR) for nature of adsorbed oxygen. Oxygen and nitrogen adsorption experiments were carried out in a 3-Flex adsorption apparatus (Micrometrics) at various temperatures (primarily at 25℃) to determine the adsorption properties of these zeolite samples as potential adsorbents for oxygen/nitrogen separation. Experiments showed that some of the zeolite samples adsorb little-to-no oxygen and nitrogen at 25℃, while other zeolites such as Sn/AlPO-5, Mo/AlPO-5, and MnSnSi/AlPO-5 adsorb decent but inconsistent amounts of oxygen with the highest observed values of about 0.47 mmol/ g, 0.56 mmol/g, and 0.84 mmol/ g respectively. The inconsistency in adsorption is currently attributed to non-uniform doping of the zeolites, and these findings validate that some substituted AlPO4-5 zeolites are promising adsorbents. However, more investigations are needed to verify the causes of this inconsistency to develop a successful AlPO4-5 zeolite-based adsorbent for oxygen/nitrogen separation.
Date Created
2021
Agent

Research and Development of a UV Assisted Direct Ink Write 3D Printer

Description

I worked with Professor Long and the Long research group in the Biodesign Institute to develop an ultra-violet assisted direct ink write 3D printer to 3D print poly(amic acid) pendant salts for their group. The project included a proof of

I worked with Professor Long and the Long research group in the Biodesign Institute to develop an ultra-violet assisted direct ink write 3D printer to 3D print poly(amic acid) pendant salts for their group. The project included a proof of concept small format 3D printer and then the development of the full scale printer. I wrote custom code to run the printer and create complex models as well as code to automatic dispense the viscous polymer we were using.

Date Created
2021-12
Agent