Synthesis of Interpretable and Obfuscatory Behaviors in Human-Aware AI Systems

161301-Thumbnail Image.png
Description
In settings where a human and an embodied AI (artificially intelligent) agent coexist, the AI agent has to be capable of reasoning with the human's preconceived notions about the environment as well as with the human's perception limitations. In addition,

In settings where a human and an embodied AI (artificially intelligent) agent coexist, the AI agent has to be capable of reasoning with the human's preconceived notions about the environment as well as with the human's perception limitations. In addition, it should be capable of communicating intentions and objectives effectively to the human-in-the-loop. While acting in the presence of human observers, the AI agent can synthesize interpretable behaviors like explicable, legible, and assistive behaviors by accounting for the human's mental model (inclusive of her sensor model) in its reasoning process. This thesis will study different behavior synthesis algorithms which focus on improving the interpretability of the agent's behavior in the presence of a human observer. Further, this thesis will study how environment redesign strategies can be leveraged to improve the overall interpretability of the agent's behavior. At times, the agent's environment may also consist of purely adversarial entities or mixed entities (i.e. adversarial as well as cooperative entities), that are trying to infer information from the AI agent's behavior. In such settings, it is crucial for the agent to exhibit obfuscatory behavior that prevents sensitive information from falling into the hands of the adversarial entities. This thesis will show that it is possible to synthesize interpretable as well as obfuscatory behaviors using a single underlying algorithmic framework.
Date Created
2021
Agent

Analysis and decision-making with social media

157582-Thumbnail Image.png
Description
The rapid advancements of technology have greatly extended the ubiquitous nature of smartphones acting as a gateway to numerous social media applications. This brings an immense convenience to the users of these applications wishing to stay connected to other individuals

The rapid advancements of technology have greatly extended the ubiquitous nature of smartphones acting as a gateway to numerous social media applications. This brings an immense convenience to the users of these applications wishing to stay connected to other individuals through sharing their statuses, posting their opinions, experiences, suggestions, etc on online social networks (OSNs). Exploring and analyzing this data has a great potential to enable deep and fine-grained insights into the behavior, emotions, and language of individuals in a society. This proposed dissertation focuses on utilizing these online social footprints to research two main threads – 1) Analysis: to study the behavior of individuals online (content analysis) and 2) Synthesis: to build models that influence the behavior of individuals offline (incomplete action models for decision-making).

A large percentage of posts shared online are in an unrestricted natural language format that is meant for human consumption. One of the demanding problems in this context is to leverage and develop approaches to automatically extract important insights from this incessant massive data pool. Efforts in this direction emphasize mining or extracting the wealth of latent information in the data from multiple OSNs independently. The first thread of this dissertation focuses on analytics to investigate the differentiated content-sharing behavior of individuals. The second thread of this dissertation attempts to build decision-making systems using social media data.

The results of the proposed dissertation emphasize the importance of considering multiple data types while interpreting the content shared on OSNs. They highlight the unique ways in which the data and the extracted patterns from text-based platforms or visual-based platforms complement and contrast in terms of their content. The proposed research demonstrated that, in many ways, the results obtained by focusing on either only text or only visual elements of content shared online could lead to biased insights. On the other hand, it also shows the power of a sequential set of patterns that have some sort of precedence relationships and collaboration between humans and automated planners.
Date Created
2019
Agent