The Investigation of the Electronic Properties of Si Based Heterojucntions: a First Principle Study of a-Si:H/c-Si and GaP/Si Heterojunctions

157167-Thumbnail Image.png
Description
In this dissertation, I investigate the electronic properties of two important silicon(Si)-based heterojunctions 1) hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) which has already been commercialized in Heterojunction with Intrinsic Thin-layer (HIT) cells and 2) gallium phosphide/silicon (GaP/Si) which has been suggested

In this dissertation, I investigate the electronic properties of two important silicon(Si)-based heterojunctions 1) hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) which has already been commercialized in Heterojunction with Intrinsic Thin-layer (HIT) cells and 2) gallium phosphide/silicon (GaP/Si) which has been suggested to be a good candidate for replacing a-Si:H/c-Si in HIT cells in order to boost the HIT cell’s efficiency.

In the first part, the defect states of amorphous silicon (a-Si) and a-Si:H material are studied using density functional theory (DFT). I first employ simulated annealing using molecular dynamics (MD) to create stable configurations of a-Si:H, and then analyze the atomic and electronic structure to investigate which structural defects interact with H, and how the electronic structure changes with H addition. I find that H atoms decrease the density of mid-gap states and increase the band gap of a-Si by binding to Si atoms with strained bonds. My results also indicate that Si atoms with strained bonds creates high-localized orbitals in the mobility gap of a-Si, and the binding of H atoms to them can dramatically decrease their degree of localization.



In the second part, I explore the effect of the H binding configuration on the electronic properties of a-Si:H/c-Si heterostructure using density functional theory studies of models of the interface between a-Si:H and c-Si. The electronic properties from DFT show that depending on the energy difference between configurations, the electronic properties are sensitive to the H binding configurations.

In the last part, I examine the electronic structure of GaP/Si(001) heterojunctions and the effect of hydrogen H passivation at the interface in comparison to interface mixing, through DFT calculations. My calculations show that due to the heterovalent mismatch nature of the GaP/Si interface, there is a high density of localized states at the abrupt GaP/Si interface due to the excess charge associated with heterovalent bonding, as reported elsewhere. I find that the addition of H leads to additional bonding at the interface which mitigates the charge imbalance, and greatly reduces the density of localized states, leading to a nearly ideal heterojunction.
Date Created
2019
Agent

Molecular polarizability as a descriptor for molecular conductance

153198-Thumbnail Image.png
Description
We studied the relationship between the polarizability and the molecular conductance

that arises in the response of a molecule to an external electric field. To illustrate

the plausibility of the idea, we used Simmons' tunneling model, which describes image

charge and dielectric effects

We studied the relationship between the polarizability and the molecular conductance

that arises in the response of a molecule to an external electric field. To illustrate

the plausibility of the idea, we used Simmons' tunneling model, which describes image

charge and dielectric effects on electron transport through a barrier. In such a

model, the barrier height depends on the dielectric constant of the electrode-molecule-electrode junction, which in turn can be approximately expressed in terms of the

molecular polarizability via the classical Clausius-Mossotti relation. In addition to

using the tunneling model, the validity of the relationships between the molecular

polarizability and the molecular conductance was tested by comparing calculated

and experimentally measured conductance of different chemical structures ranging

from covalent bonded to non-covalent bonded systems. We found that either using

the tunneling model or the first-principle calculated quantities or experimental data,

the conductance decreases as the molecular polarizability increases. In contrast to

this strong correlation, our results showed that in some cases there was a weaker or

none correlation between the conductance and other molecular electronic properties

including HOMO-LUMO gap, chemical geometries, and interactions energies. All

these results together suggest that using the molecular polarizability as a molecular

descriptor for conductance can offer some advantages compared to using other

molecular electronic properties and can give additional insight about the electronic

transport property of a junction.

These results also show the validity of the physically intuitive picture that to a first

approximation a molecule in a junction behaves as a dielectric that is polarized in the

opposite sense of the applied bias, thereby creating an interfacial barrier that hampers

tunneling. The use of the polarizability as a descriptor of molecular conductance offers

signicant conceptual and practical advantages over a picture based in molecular

orbitals. Despite the simplicity of our model, it sheds light on a hitherto neglected

connection between molecular polarizability and conductance and paves the way for

further conceptual and theoretical developments.

The results of this work was sent to two publications. One of them was accepted

in the International Journal of Nanotechnology (IJNT) and the other is still under

review in the Journal of Physical Chemistry C.
Date Created
2014
Agent