153198-Thumbnail Image.png
Description
We studied the relationship between the polarizability and the molecular conductance

that arises in the response of a molecule to an external electric field. To illustrate

the plausibility of the idea, we used Simmons' tunneling model, which describes image

charge and dielectric effects

We studied the relationship between the polarizability and the molecular conductance

that arises in the response of a molecule to an external electric field. To illustrate

the plausibility of the idea, we used Simmons' tunneling model, which describes image

charge and dielectric effects on electron transport through a barrier. In such a

model, the barrier height depends on the dielectric constant of the electrode-molecule-electrode junction, which in turn can be approximately expressed in terms of the

molecular polarizability via the classical Clausius-Mossotti relation. In addition to

using the tunneling model, the validity of the relationships between the molecular

polarizability and the molecular conductance was tested by comparing calculated

and experimentally measured conductance of different chemical structures ranging

from covalent bonded to non-covalent bonded systems. We found that either using

the tunneling model or the first-principle calculated quantities or experimental data,

the conductance decreases as the molecular polarizability increases. In contrast to

this strong correlation, our results showed that in some cases there was a weaker or

none correlation between the conductance and other molecular electronic properties

including HOMO-LUMO gap, chemical geometries, and interactions energies. All

these results together suggest that using the molecular polarizability as a molecular

descriptor for conductance can offer some advantages compared to using other

molecular electronic properties and can give additional insight about the electronic

transport property of a junction.

These results also show the validity of the physically intuitive picture that to a first

approximation a molecule in a junction behaves as a dielectric that is polarized in the

opposite sense of the applied bias, thereby creating an interfacial barrier that hampers

tunneling. The use of the polarizability as a descriptor of molecular conductance offers

signicant conceptual and practical advantages over a picture based in molecular

orbitals. Despite the simplicity of our model, it sheds light on a hitherto neglected

connection between molecular polarizability and conductance and paves the way for

further conceptual and theoretical developments.

The results of this work was sent to two publications. One of them was accepted

in the International Journal of Nanotechnology (IJNT) and the other is still under

review in the Journal of Physical Chemistry C.
Reuse Permissions


  • Download restricted.
    Download count: 1

    Details

    Title
    • Molecular polarizability as a descriptor for molecular conductance
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2014
    • bibliography
      Includes bibliographical references (p. 67-80)
    • Field of study: Chemistry

    Citation and reuse

    Statement of Responsibility

    by Reza Vatan Meidanshahi

    Machine-readable links