Augmented Permittivity and Complex Self-Assembly in Zwitterionic Block Polymers

193451-Thumbnail Image.png
Description
The properties of block polymers (BPs) are intricately coupled to the dynamic and rich nature of the nanostructured assemblies which result from the phase separation between blocks. The introduction of strong secondary forces, such as electrostatics and hydrogen bonding, into

The properties of block polymers (BPs) are intricately coupled to the dynamic and rich nature of the nanostructured assemblies which result from the phase separation between blocks. The introduction of strong secondary forces, such as electrostatics and hydrogen bonding, into block polymers greatly influences their self-assembly behavior, and therefore affects their physical and electrochemical properties often in non-trivial ways. The recent surge of work expanding scientific understanding of complex spherical packing in block polymers (BPs) has unlocked new design space for the development of advanced soft materials. The continuous matrix phase which percolates throughout spherical morphologies is ideal for many applications involving transport of ions or other small molecules. Thus, determining the accessible parameter range of such morphologies is desirable. Bulk zwitterion-containing BPs hold great potential within the realm of electroactive materials while remaining relatively untapped. In this work, architecturally and compositionally asymmetric diblock polymers were prepared with the majority block having zwitterions tethered to side chain termini at different ratios. Thermally reversible Frank-Kasper phases are observed in multiple samples with significant signs of kinetic arrest and influence. The kinetic influences are validated and described by the temperature-dependent static permittivity. Polyzwitterions combine the attractive features of zwitterions with the mechanical support and processability of polymeric materials. Among these attractive features is a potential for superior permittivity which is limited by the propensity of zwitterions to pack into strongly associating structures. Block polymer self-assembly embodies a plethora of packing frustration opportunities for optimizing polyzwitterion permittivity. The capabilities of this novel approach are revealed here, where the permittivity of a polyzwitterionic block is enhanced to a level comparable to that of pure liquid zwitterions near room temperature (εs ~ 250), but with less than a third the zwitterion concentration. The mechanistic source of permittivity enhancement from a single zwitterion-tethered block polymer is realized deductively through a series of thermal pathways and control sample experiments. Tethered zwitterions within the mixed block interface are frustrated when subject to segmental segregation under sufficient interfacial tension and packing while non-interfacial zwitterions contribute very little to permittivity, highlighting the potential for improvement by several fold.
Date Created
2024
Agent

Interactions Between Formic Acid Clusters and Femtosecond Light Pulse(s)

187399-Thumbnail Image.png
Description
As the simplest carboxylic acid, formic acid (FA) is ubiquitous to Earth’s atmosphere, helping seed cloud nucleation and leading to acid rain. By studying the interactions between FA and high intensity light under high vacuum, conditions similar to the upper

As the simplest carboxylic acid, formic acid (FA) is ubiquitous to Earth’s atmosphere, helping seed cloud nucleation and leading to acid rain. By studying the interactions between FA and high intensity light under high vacuum, conditions similar to the upper atmosphere, on other planets (either in the solar system or beyond), and even in interstellar media are emulated. These results were produced from a home built vacuum chamber system, with a Wiley-McLaren time of flight mass spectrometer and using femtosecond (fs) laser pulses. The laser characteristics were as follows: a pulse width >35 fs, center wavelength of 400 nm (probe pulse was 800 nm for the pump-probe investigation), and laser intensities at ~1015 W/cm2.At high laser intensities, the first direct experimental evidence of CO3+ was recorded from the Coulomb explosion (CE) of the formic acid dimer (FAD) from a molecular beam. Theoretical calculations provided further evidence for the formation of CO3+ from the vertical ionization of FAD. When (FA)n(H2O)mH+ clusters (n = 1-7 and m = 0-1) were exposed to similar laser intensities, the larger clusters (n = 5-7) favored complete atomization from CE, indicating that the repulsive forces within the clusters at those sizes was too great to withstand to form CO3+. The protonated nature of the clusters and the peak shapes recorded in the mass spectra suggested that neutral (FA)n+ clusters undergo a dissociation mechanism within the extraction region. A novel technique was created to calculate these dissociation times on the order of 100s of nanoseconds (ns), increasing by ~10 ns for each additional FA molecule. Using pump-probe spectroscopy, it was observed similarly that neutral (FA)n clusters with n > 1, showed evidence of ion pair formation of the form [(FA)nH+·OOCH-] on the sub-picosecond timescale, increasing by 70 fs per FA molecule. Both trends indicate that the neutral clusters prefer to form compact 3d structures, but after photoexcitation the clusters have competing pathways to ionization, either through multiphoton ionization (ns dynamics) or ion pair formation (fs dynamics) that inevitably lead to the expansion and subsequent rearrangement into linear chains for the protonated cluster.
Date Created
2023
Agent

Iodine and Bromine Occurrence and Speciation in Atmospheric Particulate Matter

Description

Quantifying halogen presence and speciation in particulate matter is crucial given the role atmospheric particulates play in transport and cycling. While some halogens (fluorine and chlorine) are often included in aerosol studies, iodine and bromine have rarely been examined, especially

Quantifying halogen presence and speciation in particulate matter is crucial given the role atmospheric particulates play in transport and cycling. While some halogens (fluorine and chlorine) are often included in aerosol studies, iodine and bromine have rarely been examined, especially outside of a marine environment. Focus on this environment is, in part, due to the existence of biogenic marine sources for both halogens. However, examining iodine and bromine in an urban environment has the potential to provide key insights into the transport and processing of these species in the atmosphere. As Tempe is set within a desert environment, bromine concentration is expected to be relatively high due to its presence in Earth’s crust, while iodine is expected to exist in higher concentrations near the coast. To detect presence and concentration, ICP-MS analysis was performed on samples taken in Tempe, AZ as well as sites in Bakersfield, CA and Davis, CA, which yielded preliminary results in line with these expectations. A secondary set of samples were taken in Tempe, AZ during dust storms, haboobs, and winter holidays. CIC was used to determine the organic fraction. In doing so, this study aims to identify species present in an urban environment as well as potential transportation pathways.

Date Created
2023-05
Agent

Temperature and polarizability effects on electron transfer in biology and artificial photosynthesis

Description
This study aims to address the deficiencies of the Marcus model of electron transfer

(ET) and then provide modifications to the model. A confirmation of the inverted energy

gap law, which is the cleanest verification so far, is presented for donor-acceptor complexes.

In

This study aims to address the deficiencies of the Marcus model of electron transfer

(ET) and then provide modifications to the model. A confirmation of the inverted energy

gap law, which is the cleanest verification so far, is presented for donor-acceptor complexes.

In addition to the macroscopic properties of the solvent, the physical properties of the solvent

are incorporated in the model via the microscopic solvation model. For the molecules

studied in this dissertation, the rate constant first increases with cooling, in contrast to the

prediction of the Arrhenius law, and then decreases at lower temperatures. Additionally,

the polarizability of solute, which was not considered in the original Marcus theory, is included

by the Q-model of ET. Through accounting for the polarizability of the reactants, the

Q-model offers an important design principle for achieving high performance solar energy

conversion materials. By means of the analytical Q-model of ET, it is shown that including

molecular polarizability of C60 affects the reorganization energy and the activation barrier

of ET reaction.

The theory and Electrochemistry of Ferredoxin and Cytochrome c are also investigated.

By providing a new formulation for reaction reorganization energy, a long-standing disconnect

between the results of atomistic simulations and cyclic voltametery experiments is

resolved. The significant role of polarizability of enzymes in reducing the activation energy

of ET is discussed. The binding/unbinding of waters to the active site of Ferredoxin leads

to non-Gaussian statistics of energy gap and result in a smaller activation energy of ET.

Furthermore, the dielectric constant of water at the interface of neutral and charged

C60 is studied. The dielectric constant is found to be in the range of 10 to 22 which is

remarkably smaller compared to bulk water( 80). Moreover, the interfacial structural

crossover and hydration thermodynamic of charged C60 in water is studied. Increasing the

charge of the C60 molecule result in a dramatic structural transition in the hydration shell,

which lead to increase in the population of dangling O-H bonds at the interface.
Date Created
2019
Agent

Nonlinear dielectric effects and modification of supramolecular structures in monohydroxy alcohols

157424-Thumbnail Image.png
Description
A driving force for studies of water, alcohols, and amides is the determination of the role of hydrogen bonding. Hydrogen bonds can break and reform, consequently creating supramolecular structures. Understanding the role supramolecular structures play in the dynamics of monohydroxyl

A driving force for studies of water, alcohols, and amides is the determination of the role of hydrogen bonding. Hydrogen bonds can break and reform, consequently creating supramolecular structures. Understanding the role supramolecular structures play in the dynamics of monohydroxyl alcohols is important to understanding hydrogen bonding in more complex systems such as proteins. Since many monohydroxyl alcohols are good glass formers, dielectric spectroscopy in the supercooled regime is used to gather information about the dynamics of these liquids. Application of high external fields will reversibly alter the polarization responses of the material from the linear response. This results in nonlinear dielectric effects (NDE) such as field induced suppression (saturation) and enhancement of amplitudes (chemical effects) as well as shifts in the time constants toward slower (entropy) and faster (energy absorption) dynamics.

The first part of this thesis describes the nonlinear dielectric experiments on monohydroxyl alcohols, with an emphasis on the time dependence of NDEs. For the first time, time-dependent experiments on monoalcohols were done, the results showed that NDEs occur on the Debye time scale. Furthermore, physical vapor deposition (PVD) is used to modify the supramolecular structure of 4-methyl-3-heptanol. Upon deposition the film cannot form the ring like structures, which are preferred in the bulk material. The as deposited film shows an enhancement of the dielectric peak by a factor of approximately 11 when compared to the bulk material. The conversion from the as deposited material back to the near bulk material was found to occur on the Debye timescale.

The second part of this thesis focuses on the question of what is governing the field induced changes seen in the liquids studied. Here a complete set of high field experiments on highly polar propylene carbonate derivatives were performed. It was demonstrated that these materials exhibit a Debye-like peak and using a combination of Adam-Gibbs and Fröhlich’s definition of entropy, proposed by Johari [G.P. Johari, J. Chem. Phys 138, 154503 (2013)], cannot solely be used to describe a frustration of dynamics. It is important to note that although these material exhibit a Debye like peak, the behavior is much different than monoalcohols.
Date Created
2019
Agent

Optical spectroscopy of heavy element containing molecules in support of fundamental physics

157156-Thumbnail Image.png
Description
Transient molecules are of great importance having proposed applications in quantum science and technology and tests of fundamental physics. In the present dissertation, the transient molecules studied are SrOH, ThF, ThCl, YbF and YbOH; each having been selected because of

Transient molecules are of great importance having proposed applications in quantum science and technology and tests of fundamental physics. In the present dissertation, the transient molecules studied are SrOH, ThF, ThCl, YbF and YbOH; each having been selected because of their proposed application. Specifically, SrOH is a candidate of constructing a molecular magneto-optical trap (MOT). The simple actinide molecules, ThF and ThCl, were selected as ligand bonding model systems to gain insight into chemical processing of Spent Nuclear Fuel. The lanthanides YbF and YbOH are venues for the determination of electron electric dipole moment (eEDM) and the studies in this dissertation provide the requisite properties for those experiments.

Intense supersonic molecular beams of these transient molecules were generated via laser ablation and spectroscopically characterized using a novel medium-resolution two-dimensional (2D) spectroscopic approach, as well as high-resolution laser induced fluorescence (LIF). The 2D medium resolution approach, which was used in the studies SrOH, ThF, ThCl and YbOH, uses a multiplexing method that simultaneously records dispersed fluorescence and excitation spectra. A significant advantage of 2D-LIF imaging is that all the electronics states can be targeted to determine the electronics states and associated vibrational spacing individually. Consequently, in the 2D spectra of ThF, ThCl and YbOH, several previously unobserved band systems have been detected in one single scan. For the DF spectra of SrOH and YbOH, the determined branching ratios show that the transitions of these molecules are diagonal (i.e. Δv=0), which is essential for the proposed potential for laser cooling. In the high-resolution of YbF, ThF, ThCl and SrOH optical spectra were recorded to an accuracy of ±30 MHz, which represents an unprecedented precision of 1:10+8.

In addition to field free spectra, optical Stark and Zeeman studies were performed to determine the most fundamental magneto-and electro-static properties. Effective Hamiltonian operators were employed to analyze the recorded spectra and determine the spectroscopic parameters. This data set also establishes a contribution toward developing new computational methodologies for treating relativistic effects and electron correlation.
Date Created
2019
Agent

Detection and surface reactivity of engineered nanoparticles in water

156706-Thumbnail Image.png
Description
Engineered nanoparticles (NPs) pose risk potentials, if they exist in water systems at significant concentrations and if they remain reactive to cause toxicity. Three goals guided this study: (1) establishing NP detecting methods with high sensitivity to tackle low

Engineered nanoparticles (NPs) pose risk potentials, if they exist in water systems at significant concentrations and if they remain reactive to cause toxicity. Three goals guided this study: (1) establishing NP detecting methods with high sensitivity to tackle low concentration and small sizes, (2) achieving assays capable of measuring NP surface reactivity and identifying surface reaction mechanisms, and (3) understanding the impact of surface adsorption of ions on surface reactivity of NPs in water.

The size detection limit of single particle inductively coupled plasma spectrometry (spICP-MS) was determined for 40 elements, demonstrating the feasibility of spICP-MS to different NP species in water. The K-means Clustering Algorithm was used to process the spICP-MS signals, and achieved precise particle-noise differentiation and quantitative particle size resolution. A dry powder assay based on NP-catalyzed methylene blue (MB) reduction was developed to rapidly and sensitively detect metallic NPs in water by measuring their catalytic reactivity.

Four different wet-chemical-based NP surface reactivity assays were demonstrated: “borohydride reducing methylene blue (BHMB)”, “ferric reducing ability of nanoparticles (FRAN)”, “electron paramagnetic resonance detection of hydroxyl radical (EPR)”, and “UV-illuminated methylene blue degradation (UVMB)”. They gave different reactivity ranking among five NP species, because they targeted for different surface reactivity types (catalytic, redox and photo reactivity) via different reaction mechanisms. Kinetic modeling frameworks on the assay outcomes revealed two surface electron transfer schemes, namely the “sacrificial reducing” and the “electrode discharging”, and separated interfering side reactions from the intended surface reaction.

The application of NPs in chemical mechanical polishing (CMP) was investigated as an industrial case to understand NP surface transformation via adsorbing ions in water. Simulation of wastewater treatment showed CMP NPs were effectively removed (>90%) by lime softening at high pH and high calcium dosage, but 20-40% of them remained in water after biomass adsorption process. III/V ions (InIII, GaIII, and AsIII/V) derived from semiconductor materials showed adsorption potentials to common CMP NPs (SiO2, CeO2 and Al2O3), and a surface complexation model was developed to determine their intrinsic complexation constants for different NP species. The adsorption of AsIII and AsV ions onto CeO2 NPs mitigated the surface reactivity of CeO2 NPs suggested by the FRAN and EPR assays. The impact of the ion adsorption on the surface reactivity of CeO2 NPs was related to the redox state of Ce and As on the surface, but varied with ion species and surface reaction mechanisms.
Date Created
2018
Agent

Field Induced Changes in the Ring/Chain Equilibrium of Hydrogen Bonded Structures: 5-Methyl-3-Heptanol

128047-Thumbnail Image.png
Description

Using non-linear dielectric techniques, we have measured the dynamics of 5-methyl-3-heptanol at a temperature at which the Kirkwood correlation factor gK indicates the coexistence of ring- and chain-like hydrogen-bonded structures. Steady state permittivity spectra recorded in the presence of a

Using non-linear dielectric techniques, we have measured the dynamics of 5-methyl-3-heptanol at a temperature at which the Kirkwood correlation factor gK indicates the coexistence of ring- and chain-like hydrogen-bonded structures. Steady state permittivity spectra recorded in the presence of a high dc bias electric field (17 MV/m) reveal that both the amplitude and the time constant are increased by about 10% relative to the low field limit. This change is attributed to the field driven conversion from ring-like to the more polar chain-like structures, and a direct observation of its time dependence shows that the ring/chain structural transition occurs on a time scale that closely matches that of the dielectric Debye peak. This lends strong support to the picture that places fluctuations of the end-to-end vector of hydrogen bonded structures at the origin of the Debye process, equivalent to fluctuations of the net dipole moment or gK. Recognizing that changes in the ring/chain equilibrium constant also impact the spectral separation between Debye and α-process may explain the difference in their temperature dependence whenever gK is sensitive to temperature, i.e., when the structural motifs of hydrogen bonding change considerably.

Date Created
2016-08-16
Agent

A comparative study of gold bonding via electronic spectroscopy

155751-Thumbnail Image.png
Description
The bonding and electrostatic properties of gold containing molecules are highly influenced by relativistic effects. To understand this facet on bonding, a series of simple diatomic AuX (X=F, Cl, O and S) molecules, where upon bond formation the Au atom

The bonding and electrostatic properties of gold containing molecules are highly influenced by relativistic effects. To understand this facet on bonding, a series of simple diatomic AuX (X=F, Cl, O and S) molecules, where upon bond formation the Au atom donates or accepts electrons, was investigated and discussed in this thesis.

First, the optical field-free, Stark, and Zeeman spectroscopic studies have been performed on AuF and AuCl. The simple polar bonds between Au and typical halogens (i.e. F and Cl) can be well characterized by the electronic structure studies and the permanent electric dipole moments, el. The spectroscopic parameters have been precisely determined for the [17.7]1, [17.8]0+ and X1+ states of AuF, and the [17.07]1, [17.20]0+ and X1+ states of AuCl. The el have been determined for ground and excited states of AuF and AuCl. The results from the hyperfine analysis and Stark measurement support the assignments that the [17.7]1 and [17.8]0+ states of AuF are the components of a 3 state. Similarly, the analysis demonstrated the [19.07]1 and [19.20]0+ states are the components of the 3 state of AuCl.

Second, my study focused on AuO and AuS because the bonding between gold and sulfur/oxygen is a key component to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. The high-resolution spectra were record and analyzed to obtain the geometric and electronic structural data for the ground and excited states. The electric dipole moment, el, and the magnetic dipole moment, m, has been the precisely measured by applying external static electric and magnetic fields. el andm are used to give insight into the unusual complex bonding in these molecules.

In addition to direct studies on the gold-containing molecules, other studies of related molecules are included here as well. These works contain the pure rotation measurement of PtC, the hyperfine and Stark spectroscopic studies of PtF, and the Stark and Zeeman spectroscopic studies of MgH and MgD.

Finally, a perspective discussion and conclusion will summarize the results of AuF, AuCl, AuO, and AuS from this work (bond lengths, dipole moment, etc.). The highly quantitative information derived from this work is the foundation of a chemical description of matter and essential for kinetic energy manipulation via Stark and Zeeman interactions. This data set also establishes a synergism with computation chemists who are developing new methodologies for treating relativistic effects and electron correlation.
Date Created
2017
Agent

Strain Induced Fragility Transition in Metallic Glass

128503-Thumbnail Image.png
Description

Relaxation dynamics are the central topic in glassy physics. Recently, there is an emerging view that mechanical strain plays a similar role as temperature in altering the relaxation dynamics. Here, we report that mechanical strain in a model metallic glass

Relaxation dynamics are the central topic in glassy physics. Recently, there is an emerging view that mechanical strain plays a similar role as temperature in altering the relaxation dynamics. Here, we report that mechanical strain in a model metallic glass modulates the relaxation dynamics in unexpected ways. We find that a large strain amplitude makes a fragile liquid become stronger, reduces dynamical heterogeneity at the glass transition and broadens the loss spectra asymmetrically, in addition to speeding up the relaxation dynamics. These findings demonstrate the distinctive roles of strain compared with temperature on the relaxation dynamics and indicate that dynamical heterogeneity inherently relates to the fragility of glass-forming materials.

Date Created
2015-05-18
Agent