Interspecies SCNT-derived Humanesque Blastocysts

173172-Thumbnail Image.png
Description

Since the 1950s, scientists have developed interspecies blastocysts in laboratory settings, but not until the 1990s did proposals emerge to engineer interspecies blastocysts that contained human genetic or cellular material. Even if these embryos were not permitted to mature to

Since the 1950s, scientists have developed interspecies blastocysts in laboratory settings, but not until the 1990s did proposals emerge to engineer interspecies blastocysts that contained human genetic or cellular material. Even if these embryos were not permitted to mature to fetal stages, their ethical and political status became debated within nations attempting to use them for research. To study cell differentiation and embryonic development and causes of human diseases, interspecies-somatic-cell-nuclear-transfer -derived (iSCNT) humanesque blastocysts provided opportunities for research and therapy development. Such a technology also involved ethical debates.

Date Created
2017-06-23

"Hybrids and Chimeras: A report on the findings of the consultation" by the Human Fertilisation and Embryology Authority in October, 2007

172883-Thumbnail Image.png
Description

In 2007, the Human Fertilisation and Embryology Authority in London, UK, published Hybrids and Chimeras: A Report on the Findings of the Consultation, which summarized a public debate about research on, and suggested policy for, human animal chimeras. The HFEA

In 2007, the Human Fertilisation and Embryology Authority in London, UK, published Hybrids and Chimeras: A Report on the Findings of the Consultation, which summarized a public debate about research on, and suggested policy for, human animal chimeras. The HFEA formulated the report after conducting a series of surveys and debates from earlier in 2007. The HFEA issued a statement in September 2007, followed by an official report published on 1 October 2007. Their report on human-animal chimeras set a worldwide precedent for discussions of the ethical use of those embryos in labs. The HFEA's report led the UK government to pass legislature about the use of human-animal cytoplasmic hybrid embryos for research in the UK.

Date Created
2014-11-22

"Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal Embryos in Research" (2007), by the HFEA

172874-Thumbnail Image.png
Description

To educate its citizens about research into chimeras made from human and non-human animal cells, the United Kingdom's Human Fertilisation Embryology Authority published the consultation piece Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal

To educate its citizens about research into chimeras made from human and non-human animal cells, the United Kingdom's Human Fertilisation Embryology Authority published the consultation piece Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal Embryos in Research, in 2007. The document provided scientific and legal background, described ethical and social issues associated with research using part-human part-animal embryos, supplied a questionnaire for citizens to return to the HFEA with their opinions, and offered a list of resources for further reading to stimulate public debate. The strategy of surveying the public provided a template for developing further policy in the United Kingdom and other countries, as well as for educating citizens on embryological research.

Date Created
2014-11-04

Do Institutional Review Boards Adequately Address the CLIA Regulations When Studies Return Individual Research Results? A Document Analysis of IRB Policies and Guidance

Description
In 2014, the Centers for Medicare and Medicaid Services (CMS), which oversees the federal Clinical Laboratories Improvement Amendments (CLIA) program, issued guidance that the CLIA requirements apply when researchers seek to return individual-level research findings to study participants or their

In 2014, the Centers for Medicare and Medicaid Services (CMS), which oversees the federal Clinical Laboratories Improvement Amendments (CLIA) program, issued guidance that the CLIA requirements apply when researchers seek to return individual-level research findings to study participants or their physician (Centers for Medicare & Medicaid Services, 2014). The present study explores the stance of U.S. Institutional Review Boards (IRBs) toward the applicability of and compliance with the CLIA regulations when studies plan to return individual research results (RIRR). I performed a document content analysis of 73 IRB policies and supporting documents from 30 United States (U.S.) institutions funded for biomedical research by the National Institutes of Health in 2017. Documents analyzed included policies, procedures, guidance, protocol and consent templates, and miscellaneous documents (such as IRB presentations) found to address the RIRR to study participants. I used qualitative content and document analysis to identify themes across institutions related to the CLIA regulations and the RIRR. Basic descriptive statistics were used to represent the data quantitatively. The study found that 96.67% (n=29) of institutions had documents that addressed the RIRR to participants. The majority of the institutions had at least one document that referenced the CLIA regulations when discussing the practice of disclosing participant-specific results [76.67% (n=23)]. The majority of institutions [56.67% (n=17)] indicated that they require compliance with the CLIA regulations for returning individual study findings to participants, while 13.33% (n=4) recommended compliance. The intent of two (6.67%) institutions was vague or unclear, while seven (26.67%) institutions were silent on the topic altogether. Of the 23 institutions that referenced “CLIA” in their documents, 52.17% only mentioned CLIA in a one or two-sentence blurb, providing very little guidance to investigators. The study results provide evidence that the majority of U.S. biomedical institutions require or recommend compliance with CLIA stipulations when investigators intend to return individual research results to study participants. However, the data indicates there is heterogeneity and variation in the quality of the guidance provided.
Date Created
2021
Agent

Lessons from embryos: Haeckel's embryo drawings, evolution, and secondary biology textbooks

152605-Thumbnail Image.png
Description
In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with

In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution: Setting the Record Straight <”> and the New York Times, <“>Biology Text Illustrations more Fiction than Fact.<”> Meanwhile, others emphatically stated that the goal of comparative embryology was not to resurrect Haeckel's work. At the center of the controversy was Haeckel's no-longer-accepted idea of recapitulation. Haeckel believed that the development of an embryo revealed the adult stages of the organism's ancestors. Haeckel represented this idea with drawings of vertebrate embryos at similar developmental stages. This is Haeckel's embryo grid, the most common of all illustrations in biology textbooks. Yet, Haeckel's embryo grids are much more complex than any textbook explanation. I examined 240 high school biology textbooks, from 1907 to 2010, for embryo grids. I coded and categorized the grids according to accompanying discussion of (a) embryonic similarities (b) recapitulation, (c) common ancestors, and (d) evolution. The textbooks show changing narratives. Embryo grids gained prominence in the 1940s, and the trend continued until criticisms of Haeckel reemerged in the late 1990s, resulting in (a) grids with fewer organisms and developmental stages or (b) no grid at all. Discussion about embryos and evolution dropped significantly.
Date Created
2014
Agent

Individualizing the informed consent process for whole genome sequencing: a patient directed approach

152315-Thumbnail Image.png
Description
ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000

ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from WGS/WES are: to identify suspected yet unidentified genetic diseases, to characterize the genomic mutations in a tumor to identify targeted therapeutic agents and, to predict future diseases with the hope of promoting disease prevention strategies and/or offering early treatment. Promises notwithstanding, sequencing a human genome presents several interrelated challenges: how to adequately analyze, interpret, store, reanalyze and apply an unprecedented amount of genomic data (with uncertain clinical utility) to patient care? In addition, genomic data has the potential to become integral for improving the medical care of an individual and their family, years after a genome is sequenced. Current informed consent protocols do not adequately address the unique challenges and complexities inherent to the process of WGS/WES. This dissertation constructs a novel informed consent process for individuals considering WGS/WES, capable of fulfilling both legal and ethical requirements of medical consent while addressing the intricacies of WGS/WES, ultimately resulting in a more effective consenting experience. To better understand components of an effective consenting experience, the first part of this dissertation traces the historical origin of the informed consent process to identify the motivations, rationales and institutional commitments that sustain our current consenting protocols for genetic testing. After understanding the underlying commitments that shape our current informed consent protocols, I discuss the effectiveness of the informed consent process from an ethical and legal standpoint. I illustrate how WGS/WES introduces new complexities to the informed consent process and assess whether informed consent protocols proposed for WGS/WES address these complexities. The last section of this dissertation describes a novel informed consent process for WGS/WES, constructed from the original ethical intent of informed consent, analysis of existing informed consent protocols, and my own observations as a genetic counselor for what constitutes an effective consenting experience.
Date Created
2013
Agent