Golgi Staining Technique

Description

The Golgi staining technique, also called the black reaction after the stain's color, was developed in the 1870s and 1880s in Italy to make brain cells (neurons) visible under the microscope. Camillo Golgi developed the technique while working with nervous

The Golgi staining technique, also called the black reaction after the stain's color, was developed in the 1870s and 1880s in Italy to make brain cells (neurons) visible under the microscope. Camillo Golgi developed the technique while working with nervous tissue, which required Golgi to examine cell structure under the microscope. Golgi improved upon existing methods of staining, enabling scientists to view entire neurons for the first time and changing the way people discussed the development and composition of the brain's cells. Into the twenty-fist century, Golgi's staining method continued to inform research on the nervous system, particularly regarding embryonic development.

Date Created
2017-03-06

Interspecies SCNT-derived Humanesque Blastocysts

173172-Thumbnail Image.png
Description

Since the 1950s, scientists have developed interspecies blastocysts in laboratory settings, but not until the 1990s did proposals emerge to engineer interspecies blastocysts that contained human genetic or cellular material. Even if these embryos were not permitted to mature to

Since the 1950s, scientists have developed interspecies blastocysts in laboratory settings, but not until the 1990s did proposals emerge to engineer interspecies blastocysts that contained human genetic or cellular material. Even if these embryos were not permitted to mature to fetal stages, their ethical and political status became debated within nations attempting to use them for research. To study cell differentiation and embryonic development and causes of human diseases, interspecies-somatic-cell-nuclear-transfer -derived (iSCNT) humanesque blastocysts provided opportunities for research and therapy development. Such a technology also involved ethical debates.

Date Created
2017-06-23

"Hybrids and Chimeras: A report on the findings of the consultation" by the Human Fertilisation and Embryology Authority in October, 2007

172883-Thumbnail Image.png
Description

In 2007, the Human Fertilisation and Embryology Authority in London, UK, published Hybrids and Chimeras: A Report on the Findings of the Consultation, which summarized a public debate about research on, and suggested policy for, human animal chimeras. The HFEA

In 2007, the Human Fertilisation and Embryology Authority in London, UK, published Hybrids and Chimeras: A Report on the Findings of the Consultation, which summarized a public debate about research on, and suggested policy for, human animal chimeras. The HFEA formulated the report after conducting a series of surveys and debates from earlier in 2007. The HFEA issued a statement in September 2007, followed by an official report published on 1 October 2007. Their report on human-animal chimeras set a worldwide precedent for discussions of the ethical use of those embryos in labs. The HFEA's report led the UK government to pass legislature about the use of human-animal cytoplasmic hybrid embryos for research in the UK.

Date Created
2014-11-22

"Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal Embryos in Research" (2007), by the HFEA

172874-Thumbnail Image.png
Description

To educate its citizens about research into chimeras made from human and non-human animal cells, the United Kingdom's Human Fertilisation Embryology Authority published the consultation piece Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal

To educate its citizens about research into chimeras made from human and non-human animal cells, the United Kingdom's Human Fertilisation Embryology Authority published the consultation piece Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal Embryos in Research, in 2007. The document provided scientific and legal background, described ethical and social issues associated with research using part-human part-animal embryos, supplied a questionnaire for citizens to return to the HFEA with their opinions, and offered a list of resources for further reading to stimulate public debate. The strategy of surveying the public provided a template for developing further policy in the United Kingdom and other countries, as well as for educating citizens on embryological research.

Date Created
2014-11-04

Human Fertilisation and Embryology Authority (1991- )

172871-Thumbnail Image.png
Description

In 1991, the
United Kingdom established the Human Fertilisation and Embryology
Authority (HFEA) as a response to technologies that used human embryos.
The HFEA is a regulatory power of the Health and Social Services
Department in London, UK, that oversees

In 1991, the
United Kingdom established the Human Fertilisation and Embryology
Authority (HFEA) as a response to technologies that used human embryos.
The HFEA is a regulatory power of the Health and Social Services
Department in London, UK, that oversees the implementation of
reproductive technologies and the use of embryos in research within the
United Kingdom. It establishes protocols by which researchers may use
human embryos, develops legislation on how human embryos are stored and
used, monitors human embryological research and artificial fertilization
procedures, and prosecutes those who violate terms of embryo use. The
HFEA collects, monitors, and distributes data related to human
embryology and embryological research. The HFEA also records
international studies involving human embryos and fertilization, hosts
ethical debates, and shares collected information with the public and
scientific communities.

Date Created
2014-10-30

Intraspecies Chimeras Produced in Laboratory Settings (1960-1975)

Description

When cells-but not DNA-from two or more genetically distinct individuals combine to form a new individual, the result is called a chimera. Though chimeras occasionally occur in nature, scientists have produced chimeras in a laboratory setting since the 1960s. During

When cells-but not DNA-from two or more genetically distinct individuals combine to form a new individual, the result is called a chimera. Though chimeras occasionally occur in nature, scientists have produced chimeras in a laboratory setting since the 1960s. During the creation of a chimera, the DNA molecules do not exchange genetic material (recombine), unlike in sexual reproduction or in hybrid organisms, which result from genetic material exchanged between two different species. A chimera instead contains discrete cell populations with two unique sets of parental genes. Chimeras can occur when two independent organisms fuse at a cellular level to form one organism, or when a population of cells is transferred from one organism to another. Chimeras created in laboratories have helped scientists to identify developmental mechanisms and processes across species. Some experiments involving chimeras aim to provide further knowledge of immune reactions against disease or to create animal models to understand human disease.

Date Created
2014-11-25

Santiago Felipe Ramon y Cajal (1852-1934)

172828-Thumbnail Image.png
Description

Santiago Felipe Ramon y Cajal investigated brains in the nineteenth and twentieth centuries in Spain. He identified and individuated many components of the brain, including the neuron and the axon. He used chick embryos instead of adult animals, then

Santiago Felipe Ramon y Cajal investigated brains in the nineteenth and twentieth centuries in Spain. He identified and individuated many components of the brain, including the neuron and the axon. He used chick embryos instead of adult animals, then customary in brain research, to study the development and physiology of the cerebellum, spinal cord, and retina. Ramon y Cajal received the Nobel Prize in Physiology and Medicine in 1906, along with Camillo Golgi, for his work on the structure of the nervous system.

Date Created
2014-06-05

Contemplating the use of neuroimaging as evidence in criminal sentencing

153173-Thumbnail Image.png
Description
Neuroimaging has appeared in the courtroom as a type of `evidence' to support claims about whether or not criminals should be held accountable for their crimes. Yet the ability to abstract notions of culpability and criminal behavior with confidence from

Neuroimaging has appeared in the courtroom as a type of `evidence' to support claims about whether or not criminals should be held accountable for their crimes. Yet the ability to abstract notions of culpability and criminal behavior with confidence from these imagines is unclear. As there remains much to be discovered in the relationship between personal responsibility, criminal behavior, and neurological abnormalities, questions have been raised toward neuroimaging as an appropriate means to validate these claims.

This project explores the limits and legitimacy of neuroimaging as a means of understanding behavior and culpability in determining appropriate criminal sentencing. It highlights key philosophical issues surrounding the ability to use neuroimaging to support this process, and proposes a method of ensuring their proper use. By engaging case studies and a thought experiment, this project illustrates the circumstances in which neuroimaging may assist in identifying particular characteristics relevant for criminal sentencing.

I argue that it is not a question of whether or not neuroimaging itself holds validity in determining a criminals guilt or motives, but rather a proper application of the issue is to focus on the way in which information regarding these images is communicated from the `expert' scientists to the `non-expert' making decisions about the sentence that are most important. Those who are considering this information's relevance, a judge or jury, are typically not well versed in criminal neuroscience and interpreting the significance of different images. I advocate the way in which this information is communicated from the scientist-informer to the decision-maker parallels in importance to its actual meaning.

As a solution, I engage Roger Pielke's model of honest brokering as a solution to ensure the appropriate use of neuroimaging in determining criminal responsibility and sentencing. A thought experiment follows to highlight the limits of science, engage philosophical repercussions, and illustrate honest brokering as a means of resolution. To achieve this, a hypothetical dialogue reminiscent of Kenneth Schaffner's `tools for talking' with behavioral geneticists and courtroom professionals will exemplify these ideas.
Date Created
2014
Agent