Multiphase Direct Ink Writing: Nature-Inspired Layer Patterning For Structural and Functional Versatility

193396-Thumbnail Image.png
Description
Additive manufacturing, also known as 3D printing, has revolutionized modern manufacturing in several key areas: complex geometry fabrication, rapid prototyping and iteration, customization and personalization, reduced material waste, supply chain flexibility, complex assemblies and consolidated parts, and material innovation. As

Additive manufacturing, also known as 3D printing, has revolutionized modern manufacturing in several key areas: complex geometry fabrication, rapid prototyping and iteration, customization and personalization, reduced material waste, supply chain flexibility, complex assemblies and consolidated parts, and material innovation. As the technology continues to evolve, its impact on manufacturing is expected to grow, driving further innovation and reshaping traditional production processes. Some innovation examples in this field are inspired by natural or bio-systems, such as honeycomb structures for internal morphological control to increase strength, bio-mimetic composites for scaffold structures, or shape memory materials in 4D printing for targeted drug delivery. However, the technology is limited by its ability to manipulate multiple materials, especially tuning their submicron characteristics when they show non-compatible chemical or physical features. For example, the deposition and patterning of nanoparticles with different dimensions have seen little success, except in highly precise and slow 3D printing processes like aerojet or electrohydrodynamic. Taking inspiration from the layered patterns and structures found in nature, this research aims to demonstrate the development and versatility of a newly developed ink-based composite 3D printing mechanism called multiphase direct ink writing (MDIW). The MDIW is a multi-materials extrusion system, with a unique nozzle design that can accommodate two immiscible and non-compatible polymer or nano-composite solutions as feedstock. The intricate internal structure of the nozzle enables the rearrangement of the feedstock in alternating layers (i.e., ABAB...) and multiplied within each printed line. This research will first highlight the design and development of the MDIW 3D printing mechanism, followed by laminate processing to establish the requirements of layer formation in the XY-axis and the effect of layer formation on its microstructural and mechanical properties. Next, the versatility of the mechanism is also shown through the one-step fabrication of shape memory polymers with dual stimuli responsiveness, highlighting the 4D printing capabilities. Moreover, the MDIW's capability of dual nanoparticle patterning for manufacturing multi-functional carbon-carbon composites will be highlighted. Comprehensive and in-depth studies are conducted to investigate the morphology-structure-property relationships, demonstrating potential applications in structural engineering, smart and intelligent devices, miniature robotics, and high-temperature systems.
Date Created
2024
Agent

Electrical and Mechanical Characterization of Hybrid Buckypaper/Carbon Fiber Reinforced Polymer Matrix Composites

193374-Thumbnail Image.png
Description
Carbon nanotubes (CNTs) have emerged as compelling materials for enhancing both electrical and mechanical properties of aerospace structures. Buckypaper (BP), a porous membrane consisting of a highly cross-linked network of CNTs, can be effectively integrated with carbon fiber reinforced polymer

Carbon nanotubes (CNTs) have emerged as compelling materials for enhancing both electrical and mechanical properties of aerospace structures. Buckypaper (BP), a porous membrane consisting of a highly cross-linked network of CNTs, can be effectively integrated with carbon fiber reinforced polymer (CFRP) composites to simultaneously enhance their electromagnetic interference (EMI) shielding effectiveness (SE) and mechanical properties. In existing literature, CNT based nanocomposites are shown to improve the flexural strength and stiffness of CFRP laminates. However, a limited amount of research has been reported in predicting the EMI SE of hybrid BP embedded CFRP composites. To characterize the EMI shielding response of hybrid BP/CFRP laminates, a novel modeling approach based on equivalent electrical circuits is employed to estimate the electrical conductivity of unidirectional CFRP plies. This approach uses Monte Carlo simulations and accounts for the effects of quantum tunneling at the fiber-fiber contact region. This study specifically examines a signal frequency range of 50 MHz to 12 GHz, corresponding to the very high to X band spectrum. The results indicate that at a frequency of 12 GHz, the longitudinal conductivity decreases to around ~3,300 S/m from an initial DC value of 40,000 S/m, while the transverse conductivity concurrently increases from negligible to approximately ~12.67 S/m. These results are then integrated into Ansys High Frequency Structure Simulator (HFSS) to predict EMI SE by simulating the propagation of electromagnetic waves through a semi-infinite composite shield representative volume element. The numerical simulations illustrate that incorporating BP allows for significant ii improvements in SE of hybrid BP/CFRP composites. At 12 GHz signal frequency, for example, the incorporation of a single BP interleave enhances the SE of a [90,0] laminate by up to ~64%, while the incorporation of two BP interleaves in a [90,0,+45,-45,0,90]s balanced symmetric laminate enhances its SE by ~20% . This enhancement is due to the high conductivity of BP at high frequencies. Additionally, to evaluate the flexural property enhancements due to BP, experimental three-point bend tests were conducted on different configurations of hybrid BP/CFRP laminates, and their strength and stiffness were compared with the non-BP samples. Micrographs of failed samples are acquired using an optical microscope, which provides insights into their underlying damage mechanisms. Fractography analysis confirms the role of BP in preventing through-thickness crack propagation, attributed to the excellent crack retardation properties of CNTs.
Date Created
2024
Agent

Explore Rapid 3D Printing of Magnetically Actuated Microstructures Via Micro-Continuous Liquid Interface Production

190908-Thumbnail Image.png
Description
Advancements in three-dimensional (3D) additive manufacturing techniques have opened up new possibilities for healthcare systems and the medical industry, allowing for the realization of concepts that were once confined to theoretical discussions. Among these groundbreaking research endeavors is the development

Advancements in three-dimensional (3D) additive manufacturing techniques have opened up new possibilities for healthcare systems and the medical industry, allowing for the realization of concepts that were once confined to theoretical discussions. Among these groundbreaking research endeavors is the development of intricate magnetic structures that can be actuated through non-invasive methods, including electromagnetic and magnetic actuation. Magnetic actuation, in particular, offers the advantage of untethered operation. In this study, a photopolymerizable resin infused with Fe3O4 oxide nanoparticles is employed in the printing process using the micro-continuous liquid interface production technique. The objective is to optimize the manufacturing process to produce microstructures featuring smooth surfaces and reduced surface porosity, and enhanced flexibility and magnetic actuation. Various intricate structures are fabricated to validate the printing process's capabilities. Furthermore, the assessment of the flexibilty of these 3D-printed structures is conducted in the presence of an external magnetic field using a homemade bending test setup, allowing for a comprehensive characterization of these components. This research serves as a foundation for the future design and development of micro-robots using micro-continuous liquid interface production technique.
Date Created
2023
Agent

Decarbonization of Steel and Comparative Analysis With Alternative Materials

187751-Thumbnail Image.png
Description
The purpose of this study was to comprehend the global warming potential (GWP), cost variability, and competitiveness of steel with rising carbon taxes. Aluminum, glass fiber composite, and carbon fiber composite were chosen as competing materials. In order to compare

The purpose of this study was to comprehend the global warming potential (GWP), cost variability, and competitiveness of steel with rising carbon taxes. Aluminum, glass fiber composite, and carbon fiber composite were chosen as competing materials. In order to compare the aforementioned factors, the GWP of several processes to produce steel, aluminum, and fiber composites was examined. Cost analyses of various methods were also carried out to determine their viability. Energy consumption data for each of the paths under consideration were taken from the literature for the study. To get the consistent GWP for traditional and decarbonized scenarios, the required energy is multiplied with corresponding energy source (natural gas or electricity). Even after accounting for the carbon tax and the weight-reduction factor, the results show that steel still has the lowest production costs, followed by aluminum, while fiber composites remain the most costly. EAF- steel and secondary aluminum has least GWP followed by H2-DRI (Hydrogen- Direct Reduced Iron)steel and NG-DRI (Natural Gas- Direct Reduced Iron) steel with carbon capture and storage (CCS). The state of art technology for glass fiber reinforced composite also emits less carbon dioxide but the cost of production is still high. Carbon fiber reinforced composite emits most carbon dioxide and is least economical.
Date Created
2023
Agent

Synthesis and Property Characterization of the MXenes

187679-Thumbnail Image.png
Description
Nanomaterials redefine the lens through which the world is viewed today. The miniaturization of devices and systems to the nanoscale explodes the realm of what is possible as the interactions with neighboring atoms and molecules increase. This interactivity creates ripple

Nanomaterials redefine the lens through which the world is viewed today. The miniaturization of devices and systems to the nanoscale explodes the realm of what is possible as the interactions with neighboring atoms and molecules increase. This interactivity creates ripple effects that lead to superior mechanical, thermal, electrical, and optical properties that are highly desired across several industries. Two-dimensional (2D) materials are a branch of this family, and the focus of this paper revolves around a recent addition to this category called MXenes. The versatile properties of these 2D nanomaterials have made them unique, as they have the desired performance that can be utilized in several industries, especially energy management, wastewater treatment, and microelectronic devices. Followed by the MAX phase synthesis, hydrofluoric (HF) acid has been the primary etchant utilized to derive these 2D nanoparticles. However, alternative etchants via reactions are desirable to achieve similar selective etching without involving highly toxic HF. Therefore, this study investigated MXene synthesis and applications in 3D printing, followed by the formation of the precursor MAX, an optimized in-situ etching method, and streamlined post-etching processes to maximize 2D MXene yield. The etched powders were then analyzed using scanning electron microscopy (SEM), x-ray diffraction (XRD), atomic force microscopy (AFM), and energy-dispersive x-ray spectroscopy (EDS) characterization methods to verify and validate the MXene dimensions, chemistry, and crystal structures. Simple applications, such as the dispersion feasibility for customizing micropatterns via 3D printing, were also demonstrated as examples. Finally, this research showed the simple processing of 2D MXenes and their potential in structural support, heat dissipation, microelectronics, optical meta-surfaces, and other areas.
Date Created
2023
Agent

Rheology and Dispersion Study of Printing Ink for Ultrafast Layer-less Fabrication of 3D Metal Objects Using Vat Photopolymerization with Continuous Liquid Flow

187418-Thumbnail Image.png
Description
Stereolithography (SLA) is an innovative additive manufacturing technique that has gained immense popularity in recent times due to its ability to produce complex and precise three-dimensional objects. However, the quality of the final product depends on the stability and homogeneity

Stereolithography (SLA) is an innovative additive manufacturing technique that has gained immense popularity in recent times due to its ability to produce complex and precise three-dimensional objects. However, the quality of the final product depends on the stability and homogeneity of the photocurable metallic ink used, which is crucial for manufacturing high-quality parts with good surface finish and higher density. To achieve homogeneity in the photocurable metallic resin, the study conducted on optimizing the printing ink for ultrafast layer less fabrication of 3D metal objects investigated the effectiveness of different dispersants such as KH 560, Triton X-100, BYK 2013, BYK 2030, and BYK 111. The use of dispersants plays a vital role in optimizing the ink and enhancing the surface finish and density of the final product. The rheology results showed that the appropriate dispersant has the potential to improve the properties of the printing ink and benefit the integrity of the printed green bodies and their surface finish. By using the optimized suspension, the study was able to fabricate parts with high metallic loading at an ultrafast speed using the Continuous Liquid Interface Production technique. FTIR analysis, sedimentation testing, and rheology study has been carried out which demonstrates the effects of the utilization of various dispersants optimally to improve the homogeneity and manufactured part’s integrity. Power law has been used to understand the viscosity behavior of dispersants in a photocurable ink with copper sulfate keeping the parameters such as shearing rate, stress, and torque intact. The microscopic images of the sintered parts showed high precision and an extremely smooth surface finish, which underscores the technique's potential to produce high-quality 3D metal objects. The solubility of dispersants significantly influenced the structural quality after washing and debinding processes. This study provides valuable information to design photocurable metallic suspensions for metal salts like copper sulfate pentahydrate.
Date Created
2023
Agent

Understanding the Role of Rheology in Binder-based Metal Additive Manufacturing of Solid and Nanoporous Metals

171991-Thumbnail Image.png
Description
This dissertation is focused on the rheology scaling of metal particle reinforced polymermatrix composite made of solid and nanoporous metal powders to enable their continuous 3D printing at high (>60vol%) metal content. There remained a specific knowledge gap on how to predict

This dissertation is focused on the rheology scaling of metal particle reinforced polymermatrix composite made of solid and nanoporous metal powders to enable their continuous 3D printing at high (>60vol%) metal content. There remained a specific knowledge gap on how to predict successful extrusion with densely packed metals by utilizing their suspension melt rheological properties. In the first project, the scaling of the dynamic viscosity of melt-extrudate filaments made of Polylactic acid (PLA) and gas-atomized solid NiCu powders was studied as a function of the metal’s volumetric packing and feedstock pre-mixing strategies and correlated to its extrudability performance, which fitted well with the Krieger-Dougherty analytical model. 63.4 vol% Filaments were produced by employing solution-mixing strategy to reduce sintered part porosity and shrinkage. After sintering, the linear shrinkage dropped by 76% compared to the physical mixing. By characterizing metal particle reinforced polymer matrix composite feedstock via flow-sweep rheology, a distinct extension of shear-thinning towards high shear rates (i.e. 100 s-1) was observed at high metal content – a result that was attributed to the improved wall adhesion. In comparison, physically mixed filament failed to sustain more than 10s-1 shear rate proving that they were prone to wall slippage at a higher shear rate, giving an insight into the onset of extrusion jamming. In the second project, nanoporous copper made out of electroless chemical dealloying was utilized as fillers, because of their unique physiochemical properties. The role of capillary imbibition of polymers into metal nanopores was investigated to understand their effect on density, zero-shear viscosity, and shear thinning. It was observed that, although the polymeric fluid’s transient concentration regulates its wettability, the polymer chain length ultimately dictates its melt rheology, which consequentially facilitates densification of pores during vacuum annealing. Finally, it was demonstrated that higher imbibition into nanopores leads to extrusion failure due to a combined effect of volumetric packing increase and nanoconfinement, providing a deterministic materials design tool to enable continuous 3D printing. The outcome of this study might be beneficial to integrate nanoporous metals into binder-based 3D printing technology to fabricate interdigitated battery electrodes and multifunctional 3D printed electronics.
Date Created
2022
Agent

Investigating the Solid Oxide Fuel Cell Anode Degradation under Siloxane Contamination

171946-Thumbnail Image.png
Description
Siloxane, a common contaminant present in biogas, is known for adverse effects on cogeneration prime movers. In this work, the solid oxide fuel cell (SOFC) nickel-yttria stabilized zirconia (Ni-YSZ) anode degradation due to poisoning by siloxane was investigated. For this

Siloxane, a common contaminant present in biogas, is known for adverse effects on cogeneration prime movers. In this work, the solid oxide fuel cell (SOFC) nickel-yttria stabilized zirconia (Ni-YSZ) anode degradation due to poisoning by siloxane was investigated. For this purpose, experiments with different fuels, different deposition substrate materials, different structure of contamination siloxane (cyclic and linear) and entire failure process are conducted in this study. The electrochemical and material characterization methods, such as Electrochemical Impedance Spectroscopy (EIS), Scanning Electron Microscope- Wavelength Dispersive Spectrometers (SEM-WDS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), and Raman spectroscopy, were applied to investigate the anode degradation behavior. The electrochemical characterization results show that the SOFCs performance degradation caused by siloxane contamination is irreversible under bio-syngas condition. An equivalent circuit model (ECM) is developed based on electrochemical characterization results. Based on the Distribution of Relaxation Time (DRT) method, the detailed microstructure parameter changes are evaluated corresponding to the ECM results. The results contradict the previously proposed siloxane degradation mechanism as the experimental results show that water can inhibit anode deactivation. For anode materials, Ni is considered a major factor in siloxane deposition reactions in Ni-YSZ anode. Based on the results of XPS, XRD and WDS analysis, an initial layer of carbon deposition develops and is considered a critical process for the siloxane deposition reaction. Based on the experimental results in this study and previous studies about siloxane deposition on metal oxides, the proposed siloxane deposition process occurs in stages consisting of the siloxane adsorption, initial carbon deposition, siloxane polymerization and amorphous silicon dioxide deposition.
Date Created
2022
Agent

Mechanical Behaviors at Elevated Temperature and Fatigue Strength Analysis of E-Beam PBF Additively Manufactured Ti6Al4V Components

171825-Thumbnail Image.png
Description
High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations

High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive manufacturing processes, due to variation of thermal gradient and cooling rates, and afterward during different thermomechanical loads, which parts experience in their specific applications, could also impact its mechanical properties both at room and high temperatures. In this study, an in-depth analysis of how different microstructural features, such as crystallographic texture, grain size, grain boundary misorientation angles, and inherent defects, as byproducts of electron beam powder bed fusion (EB-PBF) AM process, impact its anisotropic mechanical behaviors and softening behaviors due to interacting mechanisms. Mechanical testing is conducted for EB-PBF Ti6Al4V parts made at different build orientations up to 600°C temperature. Microstructural analysis using electron backscattered diffraction (EBSD) is conducted on samples before and after mechanical testing to understand the interacting impact that temperature and mechanical load have on the activation of certain mechanisms. The vertical samples showed larger grain sizes, with an average of 6.6 µm, a lower average misorientation angle, and subsequently lower strength values than the other two horizontal samples. Among the three strong preferred grain orientations of the α phases, <1 1 2 ̅ 1> and <1 1 2 ̅ 0> were dominant in horizontally built samples, whereas the <0 0 0 1> was dominant in vertically built samples. Thus, strong microstructural variation, as observed among different EB-PBF Ti6Al4V samples, mainly resulted in anisotropic behaviors. Furthermore, alpha grain showed a significant increase in average grain size for all samples with the increasing test temperature, especially from 400°C to 600°C, indicating grain growth and coarsening as potential softening mechanisms along with temperature-induced possible dislocation motion. The severity of internal and external defects on fatigue strength has been evaluated non-destructively using quantitative methods, i.e., Murakami’s square root of area parameter model and Basquin’s model, and the external surface defects were rendered to be more critical as potential crack initiation sites.
Date Created
2022
Agent

Effect of Fused Deposition Modeling Printing Parameters on the Mechanical and Thermal Behavior of PLA/Nanodiamond Composite

171755-Thumbnail Image.png
Description
Polylactic Acid (PLA), a thermoplastic polymer is well-known for its biocompatibility, making it ideal for the manufacturing of biomedical devices. However, the current applications of PLA are commonly limited by its intrinsic polymer characteristics, such as low modulus, mechanical strength,

Polylactic Acid (PLA), a thermoplastic polymer is well-known for its biocompatibility, making it ideal for the manufacturing of biomedical devices. However, the current applications of PLA are commonly limited by its intrinsic polymer characteristics, such as low modulus, mechanical strength, and thermal conductivity. To enhance these physical properties, a biocompatible nanodiamond enhanced PLA filament has been studied. Thermogravimetric analysis was performed to unveil the composition of nanodiamond in the composite. Four printing parameters: nozzle temperature, layer height, infill pattern and printing speed were considered and the Taguchi L9 orthogonal array was implemented for the design of experiments. Fused deposition modeling (FDM) technique was utilized to 3D print the PLA/Nanodiamond samples by altering the four printing parameters considered and were tested according to the standards for tensile strength, flexural strength, and thermal conductivity. Using the Taguchi optimization approach and analysis of variance (ANOVA), the generated experimental data was used to find the optimum set of printing parameters. Finally, cell studies were performed to demonstrate the biocompatibility of PLA/Nanodiamond. All these results could aid in determining the working ranges for FDM fabrication of PLA/Nanodiamond for biomedical applications.
Date Created
2022
Agent