Re-evaluating the Interactions Between Sand Transport, Wind, and Ripples to Improve Aeolian Sediment Transport Prediction

189359-Thumbnail Image.png
Description
Sediment transport by atmospheric flows shapes landscapes on Earth and other planets. Improving the ability to quantify and predict sand transport by windblown (aeolian) processes has important implications for managing erosion, land degradation, desertification, dust emissions, air quality, and other

Sediment transport by atmospheric flows shapes landscapes on Earth and other planets. Improving the ability to quantify and predict sand transport by windblown (aeolian) processes has important implications for managing erosion, land degradation, desertification, dust emissions, air quality, and other climate change hazards and risks. Despite progress since Bagnold's seminal works in the 1930s, the most frequently used aeolian sand transport equations show discrepancies between predicted and observed transport rates upwards of 300%. Differences of this magnitude strongly support re-examining how fundamental physical aeolian processes are expressed in predictive equations. Wind tunnel experiments using a Particle Imaging Velocimetry/Particle Tracking Velocimetry (PIV/PTV) system with a high-speed camera and high-powered laser were conducted to visualize fluid motions and sand particle trajectories to provide simultaneous measurements of wind flow and sand transport to re-examine the fundamental physical relationships between flow dynamics, sediment motions, and bedform development. The first experiment of this dissertation focuses on the characteristics of near-surface sand transport in the saltation cloud. From PTV particle trajectories, mean particle velocities appear independent of freestream wind speed, while velocity distribution characteristics (such as modality) and particle concentration intermittency vary with increasing sand transport. Particle trajectories from rippled bed runs show evidence of local slope influence on near-bed particle vectors. The second experiment used manual sand grain tracking to quantify particle-bed splash interactions. Results highlight that common rebound and ejecta functions do not sufficiently represent aeolian saltation splash events. Data indicate a shadowing effect of ripples, suggesting feedback between the saltation cloud, splash events, and bedform migration. The third experiment used dual PIV/PTV analysis to quantify fluid-particle interactions and compare sand concentrations with fluid stresses and turbulence characteristics through the saltation cloud. Results show that increased saltation leads to the disappearance of the constant fluid stress region, changes in aerodynamic roughness length, and increases in turbulence intensities. Leveraging technology advancements and multiple analysis methods, these results provide new, detailed information on the relationships between flow dynamics, sediment motions, and the presence of ripple bedforms. These novel empirical data illustrate some needed corrections to the theoretical and numerical frameworks for quantifying aeolian sand transport.
Date Created
2023
Agent

Disturbance signatures and sediment characteristics in aeolian dune landscapes

147837-Thumbnail Image.png
Description

Human-environment interactions in aeolian (windblown) systems has focused research on<br/>human’s role in causing and aiding recovery from natural and anthropogenic disturbance. There<br/>is room for improvement in understanding the best methods and considerations for manual<br/>coastal foredune restoration. Furthermore, the extent to

Human-environment interactions in aeolian (windblown) systems has focused research on<br/>human’s role in causing and aiding recovery from natural and anthropogenic disturbance. There<br/>is room for improvement in understanding the best methods and considerations for manual<br/>coastal foredune restoration. Furthermore, the extent to which humans play a role in changing the<br/>shape and surface textures of quartz sand grains is poorly understood. The goal of this thesis is<br/>two-fold: 1) quantify the geomorphic effectiveness of a multi-year manually rebuilt foredune and<br/>2) compare the shapes and microtextures on disturbed and undisturbed quartz sand grains. For<br/>the rebuilt foredune, uncrewed aerial systems (UAS) were used to survey the site, collecting<br/>photos to create digital surface models (DSMs). These DSMs were compared at discrete<br/>moments in time to create a sediment budget. Water levels and cross-shore modeling is also<br/>considered to predict the decadal evolution of the site. In the two years since rebuilding, the<br/>foredune has been stable, but not geomorphically resilient. Modeling shows landward foredune<br/>retreat and beach widening. For the quartz grains, t-testing of shape characteristics showed that<br/>there may be differences in the mean circularity between grains from off-highway vehicle and<br/>non-riding areas. Quartz grains from a variety of coastal and inland dunes were imaged using a<br/>scanning electron microscopy to search for evidence of anthropogenically-induced<br/>microtextures. On grains from Oceano Dunes in California, encouraging textures like parallel<br/>striations, grain fracturing, and linear conchoidal fractures provide exploratory evidence of<br/>anthropogenic microtextures. More focused research is recommended to confirm this exploratory<br/>work.

Date Created
2021-05

The Verde River Watershed: Using Geospatial Web Applications for a Virtual Learning Experience

148217-Thumbnail Image.png
Description

The COVID-19 Pandemic has provided a challenge for educators to create virtual learning materials that are engaging and impactful during times of high stress and isolation. In this creative project, I explore the variety of virtual tools and web applications

The COVID-19 Pandemic has provided a challenge for educators to create virtual learning materials that are engaging and impactful during times of high stress and isolation. In this creative project, I explore the variety of virtual tools and web applications from Esri by creating a Story Map on the Verde River Watershed. This Story Map is intended for an audience of students in late middle school and early high school but can be a resource to teachers for a wider age range. The integration of interactive technology and virtual tools in educational practices is likely to continue past the immediate circumstances of the COVID-19 pandemic. The purpose of this Story Map is to showcase one of the many uses for geospatial web applications beyond the immediate realm of GIS.

Date Created
2021-05
Agent

Spatial-Temporal Analysis of Barrett Freshmen 2007-2012: Source Area Analysis and Poisson Regression

137740-Thumbnail Image.png
Description
In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS)

In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS) methods. One strategy involved   weighted mean center and standard distance analyses for each year of data for non-resident (out-of-state) freshmen home zip codes. Another strategy, a Poisson regression model, revealed recruitment "hot and cold spots" across the U.S. to project the expected counts of Barrett freshmen by zip code. This projected count served as a comparison for the actual admissions data, where zip codes with over and under predictions represented cold and hot spots, respectively. The mean center analysis revealed a westward shift from 2007 to 2012 with similar distance dispersions. The Poisson model projected zero-student zip codes with 99.2% accuracy and non-zero zip codes with 73.8% accuracy. Norwalk, CA (90650) and New York, NY (10021) represented the top out-of-state cold spot zip codes, while the model indicated that Chandler, AZ (85249) and Queen Creek, AZ (85242) had the most in-state potential for recruitment. The model indicated that more students have come from Albuquerque, NM (87122) and Aurora, CO (80015) than anticipated, while Phoenix, AZ (85048) and Tempe, AZ (85284) represent in-state locations with higher correlations between the variables included, especially regarding distance decay, and the than expected numbers of freshmen. The regression also indicated the existence of strong likelihood of attracting Barrett students.
Date Created
2013-05
Agent

Short term exogenic climate change forcing

151767-Thumbnail Image.png
Description
Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic

Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic strengthening and the intensification of baroclinic disturbances. Galactic Cosmic ray induced tropospheric ionization modifies cloud microphysics, and modulates the global electric circuit. This dissertation is constructed around three research questions: (1): What are the biweekly declination effects of lunar gravitation upon the troposphere? (2): How do United States severe weather reports correlate with heliospheric current sheet crossings? and (3): How does cloud cover spatially and temporally vary with galactic cosmic rays? Study 1 findings show spatial consistency concerning lunar declination extremes upon Rossby longwaves. Due to the influence of Rossby longwaves on synoptic scale circulation, our results could theoretically extend numerical meteorological forecasting. Study 2 results indicate a preference for violent tornadoes to occur prior to a HCS crossing. Violent tornadoes (EF3+) are 10% more probable to occur near, and 4% less probable immediately after a HCS crossing. The distribution of hail and damaging wind reports do not mirror this pattern. Polarity is critical for the effect. Study 3 results confirm anticorrelation between solar flux and low-level marine-layer cloud cover, but indicate substantial regional variability between cloud cover altitude and GCRs. Ultimately, this dissertation serves to extend short term meteorological forecasting, enhance climatological modeling and through analysis of severe violent weather and heliospheric events, protect property and save lives.
Date Created
2013
Agent