An Analysis of the Relationship Between Tropospheric Ozone Pollution and Synoptic Conditions in Phoenix, Arizona

165418-Thumbnail Image.png
Description

High levels of surface ozone pollution have been shown to have adverse effects on human health and our environment. For at least the past decade, ozone concentrations in Phoenix, Arizona have been above the federal health standard, set in place

High levels of surface ozone pollution have been shown to have adverse effects on human health and our environment. For at least the past decade, ozone concentrations in Phoenix, Arizona have been above the federal health standard, set in place by the Environmental Protection Agency. It is crucial that all factors contributing to rising tropospheric ozone levels within the Phoenix metropolitan area are analyzed to better understand this risk for future mitigation efforts. Consequently, the primary objective of this study is specifically to examine meteorological factors' influence on Phoenix’s ground level ozone by comparing days of ozone exceedances with ozone non-exceedances days over the course of 2010-2020. To carry out this research, various weather conditions for both exceedance and non-exceedance ozone days were studied using unpaired Student’s t-tests and Pearson product-moment correlation tests. The results of this study suggest that the most significant factors that are associated with the occurrence of surface ozone exceedances in Phoenix are wind speed and temperature, whereas the least significant variables are wind direction and sky conditions. This indicates that more stable synoptic conditions in which skies are clearer, allowing for higher temperatures and more stagnant air movement, are ideal for ozone production leading to an ozone exceedance. The results from this honors thesis will be useful as it will aid in greater understanding of the relationship between Phoenix’s surface ozone and weather, aiding future ozone forecasting.

Date Created
2022-05
Agent

Short term exogenic climate change forcing

151767-Thumbnail Image.png
Description
Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic

Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic strengthening and the intensification of baroclinic disturbances. Galactic Cosmic ray induced tropospheric ionization modifies cloud microphysics, and modulates the global electric circuit. This dissertation is constructed around three research questions: (1): What are the biweekly declination effects of lunar gravitation upon the troposphere? (2): How do United States severe weather reports correlate with heliospheric current sheet crossings? and (3): How does cloud cover spatially and temporally vary with galactic cosmic rays? Study 1 findings show spatial consistency concerning lunar declination extremes upon Rossby longwaves. Due to the influence of Rossby longwaves on synoptic scale circulation, our results could theoretically extend numerical meteorological forecasting. Study 2 results indicate a preference for violent tornadoes to occur prior to a HCS crossing. Violent tornadoes (EF3+) are 10% more probable to occur near, and 4% less probable immediately after a HCS crossing. The distribution of hail and damaging wind reports do not mirror this pattern. Polarity is critical for the effect. Study 3 results confirm anticorrelation between solar flux and low-level marine-layer cloud cover, but indicate substantial regional variability between cloud cover altitude and GCRs. Ultimately, this dissertation serves to extend short term meteorological forecasting, enhance climatological modeling and through analysis of severe violent weather and heliospheric events, protect property and save lives.
Date Created
2013
Agent