Synthesis and Characterization of Low-Valent Nickel Hydrosilylation Catalysts
Description
The addition of aminoalkyl-substituted α-diimine (DI) ligands to bis(1,5 cyclooctadiene) nickel (or (COD)2Ni) resulted in the formation of two new nickel complexes with the general formula of (Me2NPrDI)2Ni and (PyEtDI)2Ni. Investigation of these complexes by 1H NMR spectroscopy revealed diimine coordination but also the absence of amine arm coordination. Using the 1H NMR spectra in conjunction with structures determined through single crystal X-ray diffraction, the electronic structure of both complexes was described as having a Ni(II) metal center that is antiferromagnetically coupled to 2 DI radical monoanions. A greater ligand field was sought by replacing the pendant amines with phosphine groups on the DI ligands. This yielded ligands with the general formula (Ph2PPrDI) and (Ph2PEtDI). Upon addition to (COD)2Ni, each ligand immediately displaced both COD ligands from the Ni0 center to produce new κ4 N,N,P,P complexes, (Ph2PPrDI)Ni and (Ph2PEtDI)Ni, as observed via single crystal X-ray diffraction and NMR spectroscopy. Reduction of the DI backbone was observed in both complexes, with both complexes being described as having a Ni(I) metal center that is antiferromagnetically coupled to a DI radical monoanion. In addition to alkylphosphine substituted DI ligands, the coordination of a pyridine diimine (PDI) ligand featuring pendant alkylphosphines was also investigated. The addition of (Ph2PPrPDI) to (COD)2Ni produced a new paramagnetic (μeff = 1.21 μB), κ4-N,N,N,P complex identified as (Ph2PPrPDI)Ni. Reduction of the PDI chelate was observed through single crystal X-ray diffraction with the electronic structure described as having a low-spin Ni(I) metal center that is weakly coupled to a PDI radical monoanion (SNi = 1/2). The ability of the three Ni complexes to mediate the hydrosilylation of several unsaturated organic substrates was subsequently investigated. Using a range of catalyst loadings, the hydrosilylation of various substituted ketones afforded a mixture of both the mono- and di-hydrosilylated products within 24 hours, while the hydrosilylation of various substituted aldehydes afforded the mono-hydrosilylated product almost exclusively within hours. (Ph2PEtDI)Ni and (Ph2PPrPDI)Ni were identified as the most effective catalysts for the hydrosilylation of aldehydes at ambient temperature using catalyst loadings of 1 mol%.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014-05
Agent
- Author (aut): Porter, Tyler Mathew
- Thesis director: Trovitch, Ryan
- Committee member: Jones, Anne
- Committee member: Mujica, Vladimiro
- Contributor (ctb): Barrett, The Honors College
- Contributor (ctb): Department of Chemistry and Biochemistry