Cryogenic Vacuum In-Situ Device Calibration

187372-Thumbnail Image.png
Description
I present a trade-study of methods for a 1-port vacuum cryogenic in-situ calibration of a vector network analyzer. The three main methods I investigated in this work were: calibration using a commercial off the shelf latching electro-mechanical six way switch,

I present a trade-study of methods for a 1-port vacuum cryogenic in-situ calibration of a vector network analyzer. The three main methods I investigated in this work were: calibration using a commercial off the shelf latching electro-mechanical six way switch, a custom switch board, and a flexible multi channel stripline based printed circuit board. The test procedure was developed for use in a ground based closed-cycle cryogenic test bench to measure the reflection coefficient of a single port connectorized device under test. The device was installed in the cryogenic system alongside calibration standards. The goal of the trade study was to find which method could be used to accomplish calibration and device measurement in a single thermal cycle. Four cycles were required for industry standard open-short-load device calibration. Room temperature measurements were done with all three calibration schemes but ultimately only the single pole six throw switch proved effective enough for further testing. The cryogenic testing was carried out on an arbitrary device at ∼ 3K temperature, over a 6 GHz bandwidth. The final objective was to develop a setup and procedure for measuring the frequency and temperature dependent complex impedance of superconducting devices such as hot electron bolometer mixers, which are used for down converting the signal in the IF chain of astronomy instruments. Characterization of superconducting devices while they are at their operating temperature is challenging using traditional calibration methods. This commercial alternative is less expensive and more efficient in terms of thermal cycles and set up because it can be installed in a wide variety of cyrogenic systems.
Date Created
2023
Agent

Terahertz Astronomy Cryogenic IF Design Calibration and Measurement

187364-Thumbnail Image.png
Description
Studying the interstellar medium (ISM) is the key to answering questions about how material that exists between the stars drives the evolution of galaxies. Current models for the ISM life-cycle exist, but several steps lack observational evidence. Inthis dissertation I

Studying the interstellar medium (ISM) is the key to answering questions about how material that exists between the stars drives the evolution of galaxies. Current models for the ISM life-cycle exist, but several steps lack observational evidence. Inthis dissertation I present the work I completed in support of up-coming mission to further study the ISM. This work includes ancillary data analysis of the Carina Nebula for the upcoming balloon mission: astrophysics stratospheric telescope for high spectral resolution observations at submillimeter wavelengths (ASTHROS). I present a derived molecular gas map of Carina from Herschel dust continuum emission maps at wavelengths between 70-500 microns. I compare it to the distribution of atomic gas, using HI 21 cm data, and of multiple CO isotopologues for the J = 1 → 0 rotational transition. I use these data sets to separate the CO–dark and CO–bright molecular components to study their relative contribution to the total molecular gas mass budget in Carina. I studied the transition between atomic and molecular gas in this region, by deriving the molecular fraction as a function of position, and comparing it to theoretical models of this transition. I also present the flight hardware design, testing, and space qualification of the intermediate frequency (IF) harness for the galactic/extragalactic ultra long duration balloon spectroscopic terahertz observatory (GUSTO). The harness transmits signal via novel cryogenic flexible stripline based transmission lines operating from 0.3 - 6.0 GHz. I designed three sets of 8-channel ribbons with characteristic insertion loss of 3.07 dB/ft at 5 GHz while the line was at a temperature gradient between 20 K - 300 K. Missions like GUSTO make use of non-linear mixing elements to achieve down-conversion of higher frequencies into IF bands. The mixers have a temperature dependent impedance that is difficult to measure. The last chapters of this work detail my attempt to carry out in-situ vacuum cryogenic calibrations using industry standard commercial off-the-shelf calibration kits and cryogenic RF electro-mechanical latching switches. I present the complex impedance of a non-linear superconducting transmission line as measured with a cryogenic calibration.
Date Created
2023
Agent

Deep imaging of distant galaxies using the large binocular telescope

156675-Thumbnail Image.png
Description
In the past three decades with the deployment of space-based from x-rays to infrared telescopes and operation of 8-10 m class ground based telescopes, a hand-full of regions of the sky have emerged that probe the distant universe over relatively

In the past three decades with the deployment of space-based from x-rays to infrared telescopes and operation of 8-10 m class ground based telescopes, a hand-full of regions of the sky have emerged that probe the distant universe over relatively wide fields with the aim of understanding the assembly of apparently faint galaxies. To explore this new frontier, observations were made with the Large Binocular Cameras (LBCs) on the Large Binocular Telescope (LBT) of a well-studied deep field, GOODS-North, which has been observed by a wide range of telescopes from the radio to x-ray. I present a study of the trade-off between depth and resolution using a large number of LBT/LBC U-band and R-band imaging observations in the GOODS-N field. Having acquired over 30 hours of data (315 images with 5-6 minute exposures) for U-band and 27 hours for R-band (828 images with 2 minute exposures), multiple mosaics were generated, starting with images taken under the best atmospheric conditions (FWHM <0.8"). For subsequent mosaics, data with coarser seeing values were added in until the final, deepest mosaic included all images with FWHM <1.8". For each mosaic, object catalogs were made to compare the optimal-resolution, yet shallower image to the low-resolution but deeper image. For the brightest galaxies within the GOODS-N field, structure and clumpy features within the galaxies are more prominent in the optimal-resolution image compared to the deeper mosaics. I conclude that for studies of brighter galaxies and features within them, the optimal-resolution image should be used. However, to fully explore and understand the faintest objects, the deeper imaging with lower resolution are also required. For the 220 and 360 brightest galaxies in the U-band and R-band images respectively, there is only a marginal difference between the optimal-resolution and lower-resolution light-profiles and their integrated total fluxes. This helps constrain how much flux can be missed in galaxy outskirts, which is important for studies of Extragalactic Background Light. Finally, I also comment on a collection of galaxies in the field with tidal tails and streams, diffuse plumes, and bridges.
Date Created
2018
Agent

Cryogenic Testing of Microwave Kinetic Inductance Detectors (MKIDs)

134612-Thumbnail Image.png
Description
We designed and constructed a cryostat setup for MKID detectors. The goal for the cryostat is to have four stages: 40K, 4K, 1K and 250mK. Prior to the start of my thesis, the cryostat was reaching 70K and 9K on

We designed and constructed a cryostat setup for MKID detectors. The goal for the cryostat is to have four stages: 40K, 4K, 1K and 250mK. Prior to the start of my thesis, the cryostat was reaching 70K and 9K on the first and second stages respectively. During the first semester of my thesis I worked on getting the second stage to reach below 4K such that it would be cold enough to add a sorption fridge to reach 250mK. Various parts were machined for the cryostat and some tweaks were made to existing pieces. The largest changes were we thinned our stainless steel supports from 2mm to 10mil and we added roughly 6-10 layers of multi-layer insulation to the first and second stages. Our result was that we now reach temperatures of 36K and 2.6K on the first and second stages respectively. Next we added the sorption fridge to the 4K stage by having the 4K stage remachined to allow the sorption fridge to be mounted to the stage. Then I designed a final, two stage, setup for the 1K and 250mK stages that has maximum capabilities of housing a six inch wafer for testing. The design was sent to a machinist, but the parts were unfinished by the end of my thesis, so the parts and stage were not tested. Once the cryostat was fully tested and proven to reach the necessary temperatures, preliminary testing was done on a Microwave Kinetic Inductance Detector (MKID) provided by Stanford. Data was collected on the resonance and quality factor as they shifted with final stage temperature (5K to 285mK) and with input power (60dB to 15dB). The data was analyzed and the results agreed within expectations, as the resonant frequency and quality factor shifted down with increased temperature on the MKID. Finally, a noise characterization setup was designed to test the noise of devices, but was not fully implemented.
Date Created
2017-05
Agent

Investigating Galaxy Evolution and Active Galactic Nucleus Feedback with the Sunyaev-Zel'dovich Effect

155787-Thumbnail Image.png
Description
Galaxy formation is a complex process with aspects that are still very uncertain or unknown. A mechanism that has been utilized in simulations to successfully resolve several of these outstanding issues is active galactic nucleus (AGN) feedback. Recent work has

Galaxy formation is a complex process with aspects that are still very uncertain or unknown. A mechanism that has been utilized in simulations to successfully resolve several of these outstanding issues is active galactic nucleus (AGN) feedback. Recent work has shown that a promising method for directly measuring this energy is by looking at small increases in the energy of cosmic microwave background (CMB) photons as they pass through ionized gas, known as the thermal Sunyaev-Zel’dovich (tSZ) effect.

In this work, I present stacked CMB measurements of a large number of elliptical galaxies never before measured using this method. I split the galaxies into two redshift groups, "low-z" for z=0.5-1.0 and “high-z” for z=1.0-1.5. I make two independent sets of CMB measurements using data from the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT), respectively, and I use data from the Planck telescope to account for contamination from dust emission. With SPT I find average thermal energies of 7.6(+3.0/−2.3) × 10^60 erg for 937 low-z galaxies, and 6.0(+7.7/−6.3) × 10^60 erg for 240 high-z galaxies. With ACT I find average thermal energies of 5.6(+5.9/−5.6) × 10^60 erg for 227 low-z galaxies, and 7.0(+4.7/−4.4) × 10^60 erg for 529 high-z galaxies.

I then attempt to further interpret the physical meaning of my observational results by incorporating two large-scale cosmological hydrodynamical simulations, one with (Horizon-AGN) and one without (Horizon-NoAGN) AGN feedback. I extract simulated tSZ measurements around a population of galaxies equivalent to those used in my observational work, with matching mass distributions, and compare the results. I find that the SPT measurements are consistent with Horizon-AGN, falling within 0.4σ at low-z and 0.5σ at high-z, while the ACT measurements are very different from Horizon-AGN, off by 6.9σ at low-z and 14.6σ at high-z. Additionally, the SPT measurements are loosely inconsistent with Horizon-NoAGN, off by 1.8σ at low-z but within 0.6σ at high-z, while the ACT measurements are loosely consistent with Horizon-NoAGN (at least much more so than with Horizon-AGN), falling within 0.8σ at low-z but off by 1.9σ at high-z.
Date Created
2017
Agent