Determination of a Shape- and Size-Independent Material Modulus for Honeycomb Structures made by Fused Deposition Modeling

134803-Thumbnail Image.png
Description
The purpose of the project is to study how the mechanical properties of cellular structures made by Fused Deposition Modeling (FDM) change depending on the number of unit cells and the cell geometry. Specimens with three geometries of regular hexagon,

The purpose of the project is to study how the mechanical properties of cellular structures made by Fused Deposition Modeling (FDM) change depending on the number of unit cells and the cell geometry. Specimens with three geometries of regular hexagon, square, and equilateral triangle were produced by FDM. The number of cells was varied systematically in each of the three geometries. The samples were tested for compressive strength. The specimens were laser-scanned to determine the actual dimensions, and those values were used in calculations to reduce the dimensional errors. Based on the calculations and analysis, it was concluded that for each geometry, the material modulus converged to a limiting value as the number of unit cells approached "infinity", and the convergent values of the material modulus were approximately the same (within 10% of error) for the three geometries. The convergent values for the material modulus of the hexagon, square, and triangle geometries were 273ksi, 248ksi, and 262ksi respectively. The percentages of error of the square and triangle geometries with respect to the hexagon geometry were 4.0%, and 9.2%, respectively.
Date Created
2016-12
Agent

Metallurgical Test Comparison of Aerospace Material using Additive Manufacturing Technologies vs. Wrought Technologies

Description
The aerospace industry has been conducting research on the additive manufacturing (AM) process since the 1980's, but companies have recently just begun to apply AM in hopes that this new technology will meet or exceed the requirements met by previous

The aerospace industry has been conducting research on the additive manufacturing (AM) process since the 1980's, but companies have recently just begun to apply AM in hopes that this new technology will meet or exceed the requirements met by previous manufacturing methods, as well as producing more cost effective, geometrically-complex products. This investigation evaluated the performance of 3D-printed aerospace test specimens made by Powder Bed Fusion Technologies, and compared them to forged specimens. A design of experiments varying build parameters was conducted in order to determine AM component porosity. Factors such as powder post-processing, directionality of the build, and fractology of the samples were evaluated through tensile strength testing and hardness testing of Inconel 718 wrought and EBM printed materials. Using electron microsopy, the responses to these factors were analyzed for stress fractures, grain boundaries, and other defects that occurred in the testing process. The comparison determined which metallurgical process provides the most effective material for aircraft usage.
Date Created
2017-05
Agent

Design and Fabrication of Soft Robotic Nautilus

Description
The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and

The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and accurately. This study seeks to set the groundwork for the development of a biomimetic nautilus using soft robotic methods. The study shows background research and discusses the methods used to develop a nautilus themed sub aquatic robot that uses a double bladder system and a pump to generate thrust for movement. The study shows how the unit would be fabricated and constructed. The study also explores why the second stage of the design failed and how it could potentially be fixed in future iterations.
Date Created
2017-05
Agent

A Study of Metal Additive Manufacturing: DMLS Design for Optimizing Automobile Components

134463-Thumbnail Image.png
Description
Automobiles can advance greatly with the introduction of metal additive manufactured components. Additive tooling is slowly becoming additive manufacturing and someday the technology will be advanced enough that high volume can be supported. This research was conducted in order to

Automobiles can advance greatly with the introduction of metal additive manufactured components. Additive tooling is slowly becoming additive manufacturing and someday the technology will be advanced enough that high volume can be supported. This research was conducted in order to show the advantages metal additive manufacturing has in the automobile industry. One large advantage to metal additive manufacturing is mass reduction. Components can be designed for production with different geometries than other manufacturing methods. The change in geometry can significantly reduce the product volume and therefore mass. Overall, mass reduction in the automotive industry is beneficial. Mass reduction can increase performance and fuel economy of the car. Once metal additive manufacturing becomes capable of higher production, metal additive manufacturing will play a major role in automobile manufacturing. Research was conducted to design and produce an optimized AC compressor bracket. The bracket was designed to the specifications of the OEM component, and the mass was reduced by more than half.
Date Created
2017-05
Agent

A study on the use of kilohertz acoustic energy for aluminum shaping and mass transport in ambient condition metal 3D printing

154886-Thumbnail Image.png
Description
This research work demonstrates the process feasibility of Ultrasonic Filament Modeling process as a metal additive manufacturing process. Additive manufacturing (or 3d printing) is the method to manufacture 3d objects layer by layer. Current direct or indirect metal additive manufacturing

This research work demonstrates the process feasibility of Ultrasonic Filament Modeling process as a metal additive manufacturing process. Additive manufacturing (or 3d printing) is the method to manufacture 3d objects layer by layer. Current direct or indirect metal additive manufacturing processes either require a high power heat source like a laser or an electron beam, or require some kind of a post processing operation to produce net-shape fully-dense 3D components. The novel process of Ultrasonic Filament Modeling uses ultrasonic energy to achieve voxel deformation and inter-layer and intra-layer mass transport between voxels causing metallurgical bonding between the voxels. This enables the process to build net-shape 3D components at room temperature and ambient conditions. Two parallel mechanisms, ultrasonic softening and enhanced mass transport due to ultrasonic irradiation enable the voxel shaping and bonding respectively. This work investigates ultrasonic softening and the mass transport across voxels. Microstructural changes in aluminium during the voxel shaping have also been investigated. The temperature evolution during the process has been analyzed and presented in this work.
Date Created
2016
Agent