Small Molecule Inhibitors as Probes for Studying the Role of Quiescin Sulfhydryl Oxidase 1 in Tumor-Associated Extracellular Matrix

158731-Thumbnail Image.png
Description
Quiescin Sulfhydryl Oxidase 1 (QSOX1) generates disulfide bonds in its client substrates via oxidation of free thiols. Localized to the Golgi and secreted, QSOX1 helps to fold proteins into their active form. Early work with QSOX1 in cancer began with

Quiescin Sulfhydryl Oxidase 1 (QSOX1) generates disulfide bonds in its client substrates via oxidation of free thiols. Localized to the Golgi and secreted, QSOX1 helps to fold proteins into their active form. Early work with QSOX1 in cancer began with the identification of a peptide from the long form of QSOX1 in plasma from patients with pancreatic ductal adenocarcinoma. Subsequent work confirmed the overexpression of QSOX1 in numerous cancers in addition to pancreatic, including those originating in the breast, lung, brain, and kidney. For my work, I decided to answer the question, “How does inhibition of QSOX1 effect the cancer phenotype?” To answer this I sought to fulfill the following goals A) determine the overexpression parameters of QSOX1 in cancer, B) identify QSOX1 small molecule inhibitors and their effect on the cancer phenotype, and C) determine potential biological effects of QSOX1 in cancer. Antibodies raised against rQSOX1 or a peptide from QSOX1-L were used to probe cancer cells of various origins for QSOX1 expression. High-throughput screening was utilized to identify 3-methoxy-n-[4(1pyrrolidinyl)phenyl]benzamide (SBI-183) as a lead inhibitor of QSOX1 enzymatic activity. Characterization of SBI-183 activity on various tumor cell lines revealed inhibition of viability and invasion in vitro, and inhibition of growth, invasion, and metastasis in vivo, a phenotype that was consistent with QSOX1 shKnockdown cells. Subsequent work identified 3,4,5-trimethoxy-N-[4-(1-pyrrolidinyl)phenyl]benzamide (SPX-009) as an SBI-183 analog with stronger inhibition of QSOX1 enzymatic activity, resulting in a more potent reduction in tumor invasion in vitro. Additional work with QSOX1 shKnockdown and Knockout (KO) cell lines confirmed current literature that QSOX1 is biologically active in modulation of the ECM. These results provide evidence for the master regulatory role of QSOX1 in cancer, making it an attractive chemotherapeutic target. Additionally, the small molecules identified here may prove to be useful probes in further elucidation of QSOX1 tumor biology and biomarker discovery.
Date Created
2020
Agent

Characterization of monoclonal antibodies against quiescin sulfhydryl oxidase 1

157235-Thumbnail Image.png
Description
Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme that catalyzes disulfide bond formation by oxidizing two free sulfhydryl groups. QSOX1 consists of a thioredoxin (Trx) and an ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) domain which each

Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme that catalyzes disulfide bond formation by oxidizing two free sulfhydryl groups. QSOX1 consists of a thioredoxin (Trx) and an ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) domain which each contain CxxC motifs that work to bind to substrates and shuttle electrons to a flavin adenine dinucleotide (FAD) cofactor that accepts the electrons and reduces molecular oxygen to hydrogen peroxide. Investigation of the role of QSOX1 in cancer progression started when it was found at higher abundance in pancreatic ductal adenocarcinoma (PDA) patient plasma compared to healthy normal donor plasma. Increased expression in QSOX1 has been further identified in breast, lung, kidney, prostate, and other cancers. QSOX1 expression is associated with cell proliferation and invasion in vitro and tumor growth in vivo. Additionally, the enzymatic activity of QSOX1 in the extracellular matrix (ECM) is important for cell invasion in vitro. Small molecule inhibitors of QSOX1 have been shown to have antitumorigenic properties in vitro and in vivo. It was hypothesized that monoclonal antibodies (mAbs) against QSOX1 would inhibit cell invasion in vitro. In this work, mice were immunized with eukaryotic-derived rQSOX1 for generation of hybridomas. Hundreds of hybridoma clones were screened by enzyme-linked immunosorbent assay (ELISA) and a fluorescent QSOX1 activity assay. Multiple rounds of subcloning and screening identified 2F1.14 and 3A10.6 as mAbs of interest. The genes for the variable regions of the antibodies were rescued and sequenced. The sequences were aligned with the variable region sequences of another published αQSOX1 mAb scFv492.1. 2F1.14 inhibits the enzymatic activity of QSOX1 by binding to the active site of QSOX1, which was determined by epitope mapping against mutants of QSOX1 that contained mutations in the active site. 3A10.6 did not appear to inhibit the function of QSOX1 in the activity assay; however, it, along with 2F1.14, suppressed tumor invasion in a 3D invasion model. These findings support the developing idea that QSOX1 is a viable target for cancer treatment because targeted inhibition of QSOX1 extracellularly reduced invasive activity. The mAbs and rQSOX1 variants produced here can serve as tools in furthering the characterization of QSOX1 and its role in cancer.
Date Created
2019
Agent

Construction and Characterization of Recombinant anti-PD-L1 Single Chain Antibodies

133633-Thumbnail Image.png
Description
Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells

Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway has emerged as an effective target for anti-tumor immunotherapies. Monoclonal antibodies (mAbs) targeting tumor-associated antigens such as PD-L1 have proven to be effective checkpoint blockades, improving therapeutic outcomes for cancer patients and receiving FDA approval as first line therapies for some cancers. A single chain variable fragment (scFv) is composed of the variable heavy and light chain regions of a mAb, connected by a flexible linker. We hypothesized that scFv proteins based on the published anti-PD-L1 monoclonal antibody sequences of atezolizumab and avelumab would bind to cell surface PD-L1. Four single chain variable fragments (scFvs) were constructed based on the sequences of these mAbs. PCR was used to assemble, construct, and amplify DNA fragments encoding the scFvs which were subsequently ligated into a eukaryotic expression vector. Mammalian cells were transfected with the scFv and scFv-IgG plasmids. The scFvs were tested for binding to PD-L1 on tumor cell lysates by western blot and to whole tumor cells by staining and flow cytometry analysis. DNA sequence analysis demonstrated that the scFv constructs were successfully amplified and cloned into the expression vectors and recombinant scFvs were produced. The binding capabilities of the scFvs constucts to PD-L1 protein were confirmed by western blot and flow cytometry analysis. This lead to the idea of constructing a CAR T cell engineered to target PD-L1, providing a possible adoptive T cell immunotherapy.
Date Created
2018-05
Agent