Small Molecule Inhibitors as Probes for Studying the Role of Quiescin Sulfhydryl Oxidase 1 in Tumor-Associated Extracellular Matrix
Description
Quiescin Sulfhydryl Oxidase 1 (QSOX1) generates disulfide bonds in its client substrates via oxidation of free thiols. Localized to the Golgi and secreted, QSOX1 helps to fold proteins into their active form. Early work with QSOX1 in cancer began with the identification of a peptide from the long form of QSOX1 in plasma from patients with pancreatic ductal adenocarcinoma. Subsequent work confirmed the overexpression of QSOX1 in numerous cancers in addition to pancreatic, including those originating in the breast, lung, brain, and kidney. For my work, I decided to answer the question, “How does inhibition of QSOX1 effect the cancer phenotype?” To answer this I sought to fulfill the following goals A) determine the overexpression parameters of QSOX1 in cancer, B) identify QSOX1 small molecule inhibitors and their effect on the cancer phenotype, and C) determine potential biological effects of QSOX1 in cancer. Antibodies raised against rQSOX1 or a peptide from QSOX1-L were used to probe cancer cells of various origins for QSOX1 expression. High-throughput screening was utilized to identify 3-methoxy-n-[4(1pyrrolidinyl)phenyl]benzamide (SBI-183) as a lead inhibitor of QSOX1 enzymatic activity. Characterization of SBI-183 activity on various tumor cell lines revealed inhibition of viability and invasion in vitro, and inhibition of growth, invasion, and metastasis in vivo, a phenotype that was consistent with QSOX1 shKnockdown cells. Subsequent work identified 3,4,5-trimethoxy-N-[4-(1-pyrrolidinyl)phenyl]benzamide (SPX-009) as an SBI-183 analog with stronger inhibition of QSOX1 enzymatic activity, resulting in a more potent reduction in tumor invasion in vitro. Additional work with QSOX1 shKnockdown and Knockout (KO) cell lines confirmed current literature that QSOX1 is biologically active in modulation of the ECM. These results provide evidence for the master regulatory role of QSOX1 in cancer, making it an attractive chemotherapeutic target. Additionally, the small molecules identified here may prove to be useful probes in further elucidation of QSOX1 tumor biology and biomarker discovery.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020
Agent
- Author (aut): Fifield, Amber
- Thesis advisor (ths): Lake, Douglas
- Committee member: Ho, Thai
- Committee member: Rawls, Jeffery
- Committee member: Borges, Chad
- Publisher (pbl): Arizona State University