Numerical Modeling and Experimental Studies on the Hydrodynamics and Heat Transfer of Silica Glass Particles

158451-Thumbnail Image.png
Description
Granular material can be found in many industries and undergo process steps like drying, transportation, coating, chemical, and physical conversions. Understanding and optimizing such processes can save energy as well as material costs, leading to improved products. Silica beads are

Granular material can be found in many industries and undergo process steps like drying, transportation, coating, chemical, and physical conversions. Understanding and optimizing such processes can save energy as well as material costs, leading to improved products. Silica beads are one such granular material encountered in many industries as a catalyst support material. The present research aims to obtain a fundamental understanding of the hydrodynamics and heat transfer mechanisms in silica beads. Studies are carried out using a hopper discharge bin and a rotary drum, which are some of the most common process equipment found in various industries. Two types of micro-glass beads with distinct size distributions are used to fill the hopper in two possible packing arrangements with varying mass ratios. For the well-mixed configuration, the fine particles clustered at the hopper bottom towards the end of the discharge. For the layered configuration, the coarse particles packed at the hopper bottom discharge first, opening a channel for the fine particles on the top. Also, parameters such as wall roughness (WR) and particle roughness (PR) are studied by etching the particles. The discharge rate is found to increase with WR, and found to be proportional to (Root mean square of PR)^(-0.58). Furthermore, the drum is used to study the conduction and convection heat transfer behavior of the particle bed with varying process conditions. A new non-invasive temperature measurement technique is developed using infrared thermography, which replaced the traditional thermocouples, to record the temperatures of the particles and the drum wall. This setup is used to understand the flow regimes of the particle bed inside the drum and the heat transfer mechanisms with varying process conditions. The conduction heat transfer rate is found to increase with decreasing particle size, decreasing fill level, and increasing rotation speed. The convection heat transfer rate increased with increasing fill level and decreasing particle size, and rotation speed had no significant effect. Due to the complexities in these systems, it is not always possible to conduct experiments, therefore, heat transfer models in Discrete Element Method codes (MFIX-DEM: open-source code, and EDEM: commercial code) are adopted, validated, and the effects of model parameters are studied using these codes.
Date Created
2020
Agent

Statistical Design of Experiment on Homemade Sourdough

133519-Thumbnail Image.png
Description
This report investigates the effects of autolyzing, fermentation medium, fermentation temperature, and proofing medium on the growth and porosity of 50% whole wheat sourdough bread. A model was designed using a 24 statistical design of experiment with replicates to screen

This report investigates the effects of autolyzing, fermentation medium, fermentation temperature, and proofing medium on the growth and porosity of 50% whole wheat sourdough bread. A model was designed using a 24 statistical design of experiment with replicates to screen and quantify the individual and combined effects of the aforementioned factors on the area of a 1 cm cross-sectional cut from each loaf. Fermentation temperature had the single largest effect, with colder fermented loaves being on average 10 cm2 larger than their warmer fermented counter parts. Autolyzing had little individual effect, but the strengthened gluten network abated some of the degassing and overproofing that is a consequent handling the dough or letting it ferment too much. This investigation quantifies how to maximize gluten development and yeast growth to create the airiest whole wheat sourdough, a healthier and easier to digest bread than many commercially available.
Date Created
2018-05
Agent

Conductive Heat Transfer in Rotary Drums

133653-Thumbnail Image.png
Description
In industrial applications, rotary drums are poorly understood and preform suboptimally when used to process particulates. In order to better understand how these drums work, a statistical experiment was designed to measure the effects of the fill level and rotation

In industrial applications, rotary drums are poorly understood and preform suboptimally when used to process particulates. In order to better understand how these drums work, a statistical experiment was designed to measure the effects of the fill level and rotation rate on the final temperature of the particle bed. A steel rotary drum was set up to be headed by three external heat guns, simulating the conditions under which standard rotary drums are operated. By measuring the bed temperature at steady state, and recording the combination of factors in each run, a regression analysis was run to determine the factor's effects. Fill level was seen to have a small positive effect, rotation rate was seen to have a small negative effect, and the interaction of the two was shown to have a large positive effect. This led the team to conclude that the flow profile of the bed may be the most important factor in heat transfer, and that further research should be done to isolate and study the effect of the flow profile.
Date Created
2018-05
Agent

A Quantitative Study on the Effects of Operating Conditions on Heat Transfer in a Rotary Drum

133976-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to tremendous energy savings on a global scale. This study investigates the effects of drum fill level and rotation rate on the steady-state average particle bed temperature. 3 mm silica beads and a stainless steel rotary drum were used at fill levels ranging from 10 \u2014 25 % and rotation rates from 2 \u2014 10 rpm. Four heat guns were used to heat the system via conduction and convection, and an infrared camera was used to record temperature data. A three-level, two-factor, full-factorial design of experiments was employed to determine the effects of each factor on the steady-state average bed temperature. Low fill level and high rotation rate resulted in higher steady-state average bed temperatures. A quantitative model showed that rotation rate had a larger impact on the steady-state bed temperature than fill level.
Date Created
2018-05
Agent

Modeling the Impact of Particle Diameter on the Conductive Heating Performance of Rotary Equipment

134394-Thumbnail Image.png
Description
Rotary equipment has been used widely in the processing of particulates for the last century, but low thermal efficiency and poor effluent uniformity continue to plague its performance. Consequently, these technologies contribute largely to modern energy waste, environmental pollution, and

Rotary equipment has been used widely in the processing of particulates for the last century, but low thermal efficiency and poor effluent uniformity continue to plague its performance. Consequently, these technologies contribute largely to modern energy waste, environmental pollution, and price inflation of products dependent on particulates in their manufacture. Large industries like pharmaceuticals and oil are impacted, yet minimal research has been conducted into optimizing the equipment because of costs associated with process shut-downs necessary to enable study. Recent works bypassed this constraint with simulations and scaled-down replicates to observe impact of common design parameters, fill level and rotation speed, on heating. This thesis supplanted these studies by investigating particle diameter as a control parameter to optimize heating. The thesis investigated methodologies to study a stainless-steel rotary drum model facilitating the conductive heating of a silica bed by external heat guns. Diameter was varied 2-4 mm at controlled fill levels and rotation speeds, and radial temperature profiles were measured with thermocouples. Heating performance was evaluated for efficiency and uniformity; the former by analyzing thermal time constants and average temperature progression across 70 minutes of operation, and the latter with corresponding radial temperature variances. It was theorized that the direct influence of size on transport properties would implicate an inverse correlation between diameter and performance, but results demonstrated no significance. The apparatus and methodology were still under development, so results were preliminary. From results, the study proposed setup modifications to refine results and future directions to guide follow-up research.
Date Created
2017-05
Agent