Residential Structural Design

134754-Thumbnail Image.png
Description
The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites

The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites and in the engineering management office. This experience sparked a curiosity in the design of wood frames for homes and the residential industry as a whole. Since then, I have also had the opportunity to intern for Felten Group, an architecture, engineering, and forensics firm specializing in residential work. A residential roof structure is designed following the American Society of Civil Engineer's Minimum Design Loads for Buildings and Other Structures design code, in addition to the National Design Standards for Wood Construction manual. Although the sub discipline of wooden structural design can often be disregarded as the simplest type of analysis, I believe that it is a key component of an education in structural engineering. Like all aspects of civil engineering, the design of a house is composed of many interconnected systems, which include the balance of structural integrity and cost, functionality and aesthetics, and light and space. For my creative project, I took these ideas into account when designing both the floor plan and roof structure of the house using Revit and RISA, respectively. Well-rounded engineers are not only technically competent, but they also understand the social dimensions of a problem and how all the systems work together. The project focuses on creating a cohesive representation of a structure as a whole and how the individual frames, trusses, and beams interact with one another using RISA, a structural analysis program. With RISA's 3D interface, I have a better understanding of how more complex structures behave, which I have not gained from my 2D perspective in classes. RISA is used to calculate support reactions and the deflections of the trusses, which are checked against the bearing capacities of the supports and deflection design criteria to ensure a safe design. Concepts such as tributary area, truss connections, and the behavior of girder systems are also explored through the process.
Date Created
2016-12
Agent

The Ethics of Human Memory Augmentation

137582-Thumbnail Image.png
Description
Memory augmentation will play a vital role in the development of our future. The predicted introduction of downloadable brains will be the first of many neurocognitive technologies that will alter our lives at both the societal and individual levels. These

Memory augmentation will play a vital role in the development of our future. The predicted introduction of downloadable brains will be the first of many neurocognitive technologies that will alter our lives at both the societal and individual levels. These technologies can affect everything from educational institutions to the judicial system, meanwhile raising issues such as autonomy, human psychology, and selfhood. Because of its tremendous potential, memory augmentation and its implications should thoroughly be examined.
Date Created
2013-05
Agent

Creating Industry-Based Marketing Materials and Instruments for University Academic Programs

136945-Thumbnail Image.png
Description
This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to

This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often cited as one of the most important statistics when making budget decisions. Many academic programs are ill-equipped to perform this task, however, as their personnel are not trained as recruiters, but rather as professors and industry professionals; furthermore, the university-level recruitment staff faces the impossible task of advertising every department's recruitment message. The Del E. Webb School of Construction has embarked upon a journey to create industry-based marketing materials to aid them in their recruitment efforts. Construction management (CM) has traditionally been viewed as a technology major relegated to vocational students and those not fit for baccalaureate programs. In recent years that perception has changed, however, as the industry has become increasingly complex and CM programs actively work to recruit students. In an attempt to increase that recruitment, the Del E. Webb School has created marketing materials that are signature to the program featuring the world's most widely-used building material, concrete, to create a keepsake for prospective students. This keepsake comes in the form of concrete replicas of the new ASU Pitchfork logo. These pitchforks are small and designed to be mass produced so that they can be handed out at recruitment events either on campus or in local schools. The Del E. Webb School had previously experimented with flexible rubber molds and flowable mixtures, such that the models could be easily cast and rapidly demolded and reset for casting. There were issues, however, as those pitchforks did not meet desired level of quality and were difficult to reproduce. This thesis thus describes an experimental program examining different casting and demolding regimens in an attempt to find the optimal way to create the pitchforks on a consistent basis. Following this, an operations manual for how to create the pitchforks was created in order to ensure that successive cohorts of construction students can reproduce the pitchforks in preparation for the School's annual recruitment events.
Date Created
2014-05
Agent

The College Decision in Rural Arizona: How Can Educators Help?

136279-Thumbnail Image.png
Description
There are many factors that influence the college decision process, but rural students face a unique set of challenges because of the environment in which they make the decision. This is a qualitative study that combines a review of previous

There are many factors that influence the college decision process, but rural students face a unique set of challenges because of the environment in which they make the decision. This is a qualitative study that combines a review of previous literature on the subject with a survey of twelve students from the graduating class of 2011 in a rural area of Arizona. Results from the interviews found that the rural students consider the perception of importance of a college degree, parental influence, and self-discovery as important factors in the decision making process. In addition, not all non-college-going students felt that college was necessary for a better quality of living, but did express desire for more development opportunities while in high school. The findings resulted in the following recommendations for local educators to help students better navigate the college decision process: teach parents how to have more meaningful conversations, provide step-by-step assistance to students about the college application process, and provide more opportunities for self/educational/career development to students.
Date Created
2015-05
Agent