Examining Biofouling on Pristine and Aged Microplastics Exposed to Tempe Town Lake Water

147954-Thumbnail Image.png
Description

This study investigated the difference in biofilm growth between pristine polypropylene microplastics and aged polypropylene microplastics. The microplastics were added to Tempe Town Lake water for 4 weeks. Each week the microplastic biofilms were quantified. Comparing the total biofilm counts,

This study investigated the difference in biofilm growth between pristine polypropylene microplastics and aged polypropylene microplastics. The microplastics were added to Tempe Town Lake water for 4 weeks. Each week the microplastic biofilms were quantified. Comparing the total biofilm counts, the results showed that the aged microplastic biofilms were larger than the pristine each week. By week 3 the aged microplastic counts had almost doubled in size increasing from 324 to 626 Colony Forming Units per gram in just one week. There was a significant difference in the diversity found from week 1 to week 4. About 40% of the diversity for the pristine microplastic biofilm was seen as light-yellow dots and about 60% of these dots were seen on the aged microplastic biofilms in both weeks. As the microplastics were submerged in the lake water, new phenotypes emerged varying from week 1 to week 4 and from pristine to aged microplastic biofilms. Generally, it was found that as the microplastics stay in the environment there is more biofilm on the particles. The aged microplastics have a larger amount of biofouling, and the pristine microplastic biofilms were found to have more diversity of phenotypes.

Date Created
2021-05
Agent

Soiled: An Environmental Podcast

Description

Soiled: An Environmental Podcast is a six episode series where common environmental topics are discussed and misconceptions surrounding these topics are debunked.

Date Created
2021-05
Agent

Enzyme-Induced Carbonate Precipitation Utilizing Fresh Urine and Calcium-Rich Zeolites

148005-Thumbnail Image.png
Description

Enzyme-induced carbonate precipitation (EICP) is a biocementation technique that produces comparatively fewer carbon dioxide emissions than traditional cementation. However, the use of synthetic reagents for EICP is costly, and the process produces an ammonium byproduct which is a harmful pollutant.

Enzyme-induced carbonate precipitation (EICP) is a biocementation technique that produces comparatively fewer carbon dioxide emissions than traditional cementation. However, the use of synthetic reagents for EICP is costly, and the process produces an ammonium byproduct which is a harmful pollutant. This study utilizes fresh urine as a source of urea and calcium-rich zeolites as an ammonium adsorbent and a source of calcium ions for the EICP cementation technique. Batch hydrolysis and adsorption experiments were conducted to determine the effects of zeolite type, zeolite form, and solution composition on ammonium adsorption and calcium release. Cementation experiments were then conducted to determine the effects of different hydrolysis and adsorption times on ammonium adsorption and calcium carbonate precipitation. The results showed that calcium-rich chabazite could be used as a source of calcium ions and as an effective adsorbent of ammonium for EICP. Additionally, synthetic, fresh urine and real, fresh urine had comparable ammonium adsorption and calcium release trends. Finally, inclusion of a pre-hydrolysis step reduced the ammonium adsorption and calcium release, but longer adsorption times lead to calcium carbonate precipitation outside of the sand column, which is an undesirable outcome for soil biocementation; even with this limitation, the calcium carbonate content of sand columns ranged from 0.48% to 0.92%, which signifies the potential of the proposed process for cementation, given a higher initial concentration of urea.

Date Created
2021-05
Agent

An Exploration into Different Speed Profiles of Platooning Automated Vehicles and Their Effect on Achieving the Desired Time Headway

148043-Thumbnail Image.png
Description

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of travel. This paper looks at two individual vehicles forming a platoon and tracks the time headway between the two. Several speed profiles are explored for the following vehicle including a triangular and trapezoidal speed profile. It is discovered that a safety violation occurs during platoon formation where the desired time headway between the vehicles is violated. The aim of this research is to explore if this violation can be eliminated or reduced through utilization of different speed profiles.

Date Created
2021-05
Agent

Assessing Urban Agricultural Practices in Desert Cities

148085-Thumbnail Image.png
Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

Date Created
2021-05
Agent

Passive Thermosyphon Solar Water Heater for Existing Swimming Pool

148468-Thumbnail Image.png
Description

Water heaters that are manufactured for swimming pools come in several forms, most of which require an electrical input for a source of power. Passive-circulation systems, however, require no electrical power input because fluid circulation occurs as a result of

Water heaters that are manufactured for swimming pools come in several forms, most of which require an electrical input for a source of power. Passive-circulation systems, however, require no electrical power input because fluid circulation occurs as a result of thermal gradients. In solar-based systems, thermal gradients are developed by energy collected from sunlight. The combination of solar collection and passive circulation yields a system in which fluids, particularly water, are heated and circulated without need of assistance from external mechanical or electrical sources. The design of such a system was adapted from that of forced-circulation solar collector systems, as were the equations describing its thermodynamic properties. The design was developed based on such constraints as material corrosion resistance, overall system cost, and location-controlled size limitations. The thermodynamic description of the designed system was adjusted on the basis of the designed system’s physical aspects, such as the configuration and material of each component within the solar collector. Numerical analysis performed with the altered thermodynamic equations projected a total energy gain of 7.39 W between 9:00 and 10:00 A.M. and a total energy gain of 13.12 W between 4:00 and 5:00 P.M. The temperature of heated water exiting the collector system was projected to be 17.62°C in the morning and 25.56°C in the afternoon. The morning projection utilized an initial fluid temperature of 12°C and an ambient air temperature of 13°C, while the afternoon projection utilized an initial fluid temperature of 17°C and an ambient air temperature of 22°C. Field testing of the designed passive thermosyphon solar collector system was performed over a period of about one month with one temperature measurement taken at the collector outlet in the morning and another taken in the afternoon. For an ambient air temperature of 13°C, the linear regression developed from the morning dataset yielded an outlet water temperature of 20°C and that for the afternoon dataset yielded an outlet water temperature of 39°C for an ambient air temperature of 17°C. The percentage error between the projected and measured results was 13.51% for the morning period and 52.58% for the afternoon period. Numerical simulation and field data demonstrated that while the collector system operated successfully, its effects were limited to the volume of water immediately surrounding the outlet of the system; the rate of circulation within the system was too low for there to be a meaningful increase in the temperature of the water body at large. The stated results demonstrate that while the particular configuration of passive circulation solar collection technology developed in this instance is capable of transferring solar thermal energy to water without additional energy sources, significant modifications are necessary in order to improve the effectiveness of the technology. Such changes may come from improvements in material availability or alterations to the configuration of components of the collector system.

Date Created
2021-05
Agent

The Making of a Treehouse

130983-Thumbnail Image.png
Description
In this creative project, a treehouse is designed for a cottonwood tree in Dolores, Colorado. The treehouse design was rooted in engineering principles, and brought to life with using the commercial civil engineering program Risa-3D.
Date Created
2020-12
Agent

Physical Aids for the Mechanics Project

131519-Thumbnail Image.png
Description
As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching

As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that there were consistent points of confusion amongst the students that the teaching staff could not efficiently communicate with the electronic or physical classroom materials available. As a physical learner, I am able to learn more comprehensively if I have a physical model to manipulate, and often found myself in the position of wanting to be able to physically represent and manipulate the systems being studied in class.
Date Created
2020-05

Structural Design: Shipping Container Coffee Shop

Description
This Barrett creative project includes the structural design of a coffee shop using recycled shipping containers in Phoenix, Arizona. Repurposing old shipping containers into commercial and residential buildings has become more popular. Even here in Arizona, buildings have already integrated

This Barrett creative project includes the structural design of a coffee shop using recycled shipping containers in Phoenix, Arizona. Repurposing old shipping containers into commercial and residential buildings has become more popular. Even here in Arizona, buildings have already integrated shipping containers into their design. Shipping containers add a unique character to the architectural design of the building and at the same time cut costs of construction due to their low prices. With using the shipping containers as building materials, there is a positive impact on the use of the structures in builds. The uniqueness of using shipping containers is what sparked my interest to design a shipping container coffee shop. For my creative project, I designed the coffee shop using the already structurally sound core of the shipping container to my advantage. However, when adding modifications to the structure, the materials of the structure were analyzed to ensure the design could take the modifications. I have taken my love for structural design, the environment, and coffee and brought it to life. Through this project, I have a better understanding of how much thought goes into designing a building and have a deeper understanding of the codes that structural engineers must follow to design and analyze buildings.
Date Created
2020-05
Agent

Impacts of new crop portfolios on water consumption in Maricopa County

131616-Thumbnail Image.png
Description
Agriculture is the second largest water consumer in the Phoenix Metropolitan region, after the municipal sector. A significant portion of the cultivated land and agricultural water demand is from the production of animal feed, including alfalfa (~69% of total cropland

Agriculture is the second largest water consumer in the Phoenix Metropolitan region, after the municipal sector. A significant portion of the cultivated land and agricultural water demand is from the production of animal feed, including alfalfa (~69% of total cropland area), corn (~8), and sorghum (-3%), which are both exported and needed to support local dairy industry. The goal of this thesis is to evaluate the impacts on water demand and crop production of four different crop portfolios using alfalfa, corn, sorghum, and feed barley. For this aim, the Water Evaluation And Planning (WEAP) platform and the embedded MABIA agronomic module are applied to the Phoenix Active Management Area (AMA), a political/hydrological region including most of Phoenix Metro. The simulations indicate that the most efficient solution is a portfolio where all study crop production is made up by sorghum, with an increase of 153% in crop yield and a reduction of 60% of water consumption compared to current conditions. In contrast, a portfolio where all study crop production is made up by alfalfa, which is primary crop grown in current conditions, decreased crop yield by 77% and increases water demand by 105%. Solutions where all study crop production is achieved with corn or feed barley lead to a reduction of 77% and 65% of each respective water demand, with a portfolio of all corn for study crop production increasing crop yield by 245% and a portfolio of all feed barley for study crop production reducing crop yield by 29%.
Date Created
2020-05
Agent