Effects of Ozone Loading Rate and Ecotoxicity of Products During Ozonation of Soil Containing Weathered Crude Oil

171901-Thumbnail Image.png
Description
The world currently faces hundreds of millions of cubic meters of soil contaminated with petroleum crude oil residuals. The application of ozone gas (O3) to contaminated soil is an effective means to oxidize petrogenic compounds and, when used with bioremediation,

The world currently faces hundreds of millions of cubic meters of soil contaminated with petroleum crude oil residuals. The application of ozone gas (O3) to contaminated soil is an effective means to oxidize petrogenic compounds and, when used with bioremediation, remove the oxidized byproducts. The overarching goal of this dissertation was to evaluate two areas of potential concern to large-scale O3 deployment: the capacity of O3-treated petroleum contaminated soils to support seed germination before bioremediation and the transport characteristics of O3 in soil columns. A matched study comparing the germination outcomes of radish (Raphanus sativus L.), grass (Lagurus ovatus), and lettuce (Lactuca sativa) in soils contaminated with three crude oils at various O3 total-dose levels showed that radish germination was sensitive to the soluble byproducts of oxidized petroleum (assayed as dissolved organic carbon [DOC]), but not sensitive to the unreacted petroleum (total petroleum hydrocarbon [TPH]). A multivariable logistic regression model based on the radish results showed that adverse germination outcomes varied with the DOC concentration and that DOC ecotoxicity decreased with increasing O3 dose-level and background organic material. The model was used to create a risk management map of conditions that created 10%, 25%, and 50% extra risks of adverse radish germination. Thus, while O3 effectively lowered TPH in soils, the byproducts exhibited ecotoxicity that inhibited radish germination. On the other hand, the sensitivity of radish germination to oxidized petroleum byproducts could be utilized to assess ecological risk. The feasibility of gas transport in the soil matrix is also of paramount concern to field-scale utilization of O3. A matched study comparing TPH removal at three field-relevant loading rates (4, 12, or 36 mgozone/ gsoil/ hr) and various total dose-levels showed an anisotropic pattern along the axial distance favoring the column inlet end. The asymmetry decreased as loading rate decreased and with concurrent improvements in O3-transport distance, O3 utilization, and heat balance. Overall, a low O3 loading rate significantly improved O3 transport and utilization efficiency, while also better distributing reaction-generated heat along the gas flow path for a depth typically utilized in bioremediation field settings.
Date Created
2022
Agent

Elucidating the Role of Ultraviolet Weathering and Biofilm Formation on the Adsorption of Micropollutants onto Microplastics

171723-Thumbnail Image.png
Description
Plastics, when released into the environment, undergo surface weathering due to mechanical abrasion and ultraviolet (UV) exposure that leads to the formation of microplastics. Weathering also introduces oxygen functional groups on the surface, which will affect surface interactions compared to

Plastics, when released into the environment, undergo surface weathering due to mechanical abrasion and ultraviolet (UV) exposure that leads to the formation of microplastics. Weathering also introduces oxygen functional groups on the surface, which will affect surface interactions compared to pristine plastics. In this study, the adsorption of selected model contaminants of high environmental relevance was evaluated at different level of abiotic and biotic transformation to understand how microplastics aging influences contaminant adsorption on high density polyethylene (HDPE) and polypropylene (PPE). Microplastics were aged through an accelerated weathering process using UV exposure with or without hydrogen peroxide. The effect of UV aging on the microplastics’ morphology and surface chemistry was characterized by Fourier Transform Infrared Spectroscopy, X-Ray Photoelectron Spectroscopy, streaming Zeta potential, Brunauer–Emmett–Teller Krypton adsorption analyses and Computed X-Ray Tomography. Sorption of organic contaminants was found to be higher on aged microplastics compared to pristine ones for all contaminants investigated. This increase in sorption affinity was found to be associated with a change in the surface chemistry and not in an increase in specific surface area after aging. Biological surface weathering (i.e., biofilm formation) was carried out at a lab-scale setting using model biofilm-forming bacteria followed by adsorption affinity measurement of biofilm-laden microplastics with the model organic contaminants. The amount of microbial biomass accumulated on the surface was also evaluated to correlate the changes in sorption affinity with the change in microplastic biofilm formation. The results of this study emphasize the need to understand how contaminant-microplastics interactions will evolve as microplastics are altered by biotic and abiotic factors in the environment.
Date Created
2022
Agent

Investigation of Chloramination and its Contribution to N-nitrosodimethylamine Formation in Drinking Water and the Atmosphere

171571-Thumbnail Image.png
Description
N-nitrosodimethylamine (NDMA) is a probable human carcinogen that has been detected in various environments including the atmosphere, clouds, surface waters, and drinking water. NDMA can form through natural reactions in the aqueous phase of the atmosphere and it can form

N-nitrosodimethylamine (NDMA) is a probable human carcinogen that has been detected in various environments including the atmosphere, clouds, surface waters, and drinking water. NDMA can form through natural reactions in the aqueous phase of the atmosphere and it can form as a disinfection byproduct in water treatment. Due to its carcinogenic nature, it is important to understand the mechanism of formation of NDMA in both engineered processes such as water treatment and in natural processes in fogs and clouds. NDMA might form through the reaction of chloramines with amines in both cases. This work analyzes polydiallyldimethyl ammonium chloride (PolyDADMAC), which is the most commonly used polymer at drinking water treatment plants and has the potential to form NDMA if free polymer is present during the chloramination (disinfection) process. The composition of industrial polyDADMAC solutions is not well understood and is difficult to analyze. This work uses 1H and 13C nuclear magnetic resonance (NMR) to analyze the polymer solution composition. Both 1H and 13C NMR allow investigation of the presence of trace impurities in the solution, gather structural information such as chain length, and inform on reaction mechanisms. The primary impurities of concern for NDMA formation were identified as dimethylamine (DMA) and short-chain oligomers of the polyDADMAC. 13C NMR was further used to confirm that NDMA likely forms from polyDADMAC via a Hofmann elimination. Chloramines might also form in fogs and clouds although to date the potential for chloramines to form NDMA in atmospheric fog and cloud droplets has not been investigated. This work uses computational modeling to determine that at reported atmospheric conditions, the chloramine pathway contributes to less than 0.01% NDMA formation. The numerical modeling identified a need for more atmospheric HOCl measurements. This work proposes a concept of using HOCl to react to form chloramine, which can react to form NDMA as a way to quantify atmospheric HOCl.
Date Created
2022
Agent

Urea Recovery from Human Urine Using Nanofiltration and Reverse Osmosis

168770-Thumbnail Image.png
Description
Global shortages of urea and unsustainable production of synthetic urea have caused concerns over the future of food production, automobile operation, and other processes. Urine is a waste product that could supplement synthetic urea production. This study utilizes polyamide reverse

Global shortages of urea and unsustainable production of synthetic urea have caused concerns over the future of food production, automobile operation, and other processes. Urine is a waste product that could supplement synthetic urea production. This study utilizes polyamide reverse osmosis (RO) and nanofiltration (NF) membranes in a cross-flow orientation to selectively recover urea from fresh human urine. Urea permeation experiments were conducted to determine the effects of urea stabilization via pH adjustment and membrane type on the production of a pure urea product. Fouling mitigation experiments were then conducted to determine the efficacy of microfiltration (MF) pretreatment on the reduction of the membrane fouling layer. The results showed that the NF90 membrane had advantageous performance to the BW30 RO and NF270 membranes, permeating 76% of the urea while rejecting 68% of the conductivity. Urine stabilization via acetic acid or sodium hydroxide addition did not inhibit membrane performance, signifying the use of pH 5 as a suitable pretreatment condition. Real fresh urine had higher rejection of constituents for NF90, suggesting the reduction of flux across the membrane due to interactions with organic material. MF pretreatment reduced foulant thickness and permeate flux loss but did not change the speciation of microorganisms. Finally, different urea-based products, such as fertilizers, biocement, and synthetic polymers, were suggested to show the potential of urine-recovered urea to reduce costs. The results from this work show the efficacy of using polyamide RO and NF membranes to supplement unsustainable synthetic production of urea with sustainably sourced urea from a waste product, human urine.
Date Created
2022
Agent

Photocatalytic Degradation of para-Chlorobenzoic Acid and Perfluorooctanoic Acid Using Titanium Dioxide and Hexagonal Boron Nitride Catalysts under Three Different Treatment Scales

161982-Thumbnail Image.png
Description
Nearly 2.1 billion people around the world to date do not have access to safe drinking water. This study proposes a compact (2-L) upflow photoreactor that uses widely available photocatalysts material, such as titanium dioxide (TiO2) or hexagonal boron nitrate

Nearly 2.1 billion people around the world to date do not have access to safe drinking water. This study proposes a compact (2-L) upflow photoreactor that uses widely available photocatalysts material, such as titanium dioxide (TiO2) or hexagonal boron nitrate (hBN), to oxidize toxic micropollutants. Photocatalysts, such as TiO2, can create powerful hydroxyl radicals (OH•) under UV irradiation to oxidize and disinfect water with various toxic pollutants present in untreated waters. The study assesses this along with few other photoreactors in terms of their performance with an indicator dye, such as methyl orange (MO), para-chlorobenzoic acid (pCBA), as an intermediate of pesticides, and perfluorooctanoic acid (PFOA), part of the per- and polyfluoroalkyl substances (PFAS), a highly persistent organic contaminant in water. This study also describes the various stages of evolution of this 2-L photoreactor, first using TiO2 coated sand in maintaining a uniform (photocatalyst) bed in suspension along with few other modifications that resulted in a photoreactor with a 3 to 4-fold increase in contact time, is discussed. The final stage of this upflow photoreactor modification resulted in the direct use of photocatalysts as a slurry, which was critical, especially for hBN, which cannot be coated onto the sand particles. During this modification and assessment, a smaller bench-top photoreactor (i.e., collimated beam) was also built and tested. It was primarily used in screening various photocatalysts and operational conditions before assessment at this upflow photoreactor and also at a commercial photoreactor (Purifics Photo-Cat) of a larger scale. Thus, the overall goal of this study is to compare a few of these photoreactors of different designs and scales. This includes a collimated beam (at bench-scale), upflow photoreactor (at testbed scale), and a commercial photoreactor, Photo-Cat (at pilot-scale). This study also discusses the performance of these photoreactors under different operating conditions, which includes evaluating two different photocatalyst types (TiO2 and hBN), variable loading rates, applied UV doses, environment pH, and supplemental peroxide addition (as AOP) and with corresponding EEO values.
Date Created
2021
Agent

Occurrence and Speciation of Bromine and Iodine in Drinking Water Sources

161979-Thumbnail Image.png
Description

Halogens in drinking water sources, such as bromine (Br) and iodine (I) pose no direct health risk, but are critical precursors in formation of cyto- and genotoxic brominated and iodinated (Br-/I-) DBPs. However, few spatial or historic datasets exist for

Halogens in drinking water sources, such as bromine (Br) and iodine (I) pose no direct health risk, but are critical precursors in formation of cyto- and genotoxic brominated and iodinated (Br-/I-) DBPs. However, few spatial or historic datasets exist for bromine and iodine species in drinking water sources. This dissertation aims to quantify and understand the occurrence and speciation of Br and I in groundwater and surface water serving as source waters for drinking water treatment plants (DWTPs). Aggregation of data from >9000 non-drinking water sampling locations in USA collected from 1930-2017 on halides (bromide (Br-) and iodide (I-)) determined that Br- concentrations were 50 μg/L and 100 μg/L; and I- concentrations were 12 μg/L and 13 μg/L in surface and groundwater respectively. Although, these locations were not drinking water sources, this first of its kind analysis provides potential bounds for Br- and I-. To focus specifically on DWTP sources, a nationwide survey of >250 drinking water sources was conducted between 2018-2020. Br- ion is the only bromine specie, whereas both inorganic (iodide and iodate ions) and organic iodine occur. I- concentrations ranged from 1-250 μg/L and are 4 to 100 times lower than Br- concentrations (10-7800 μg/L, median=80 μg/L). No strong correlation exists between bromide and iodide occurrence (R<0.5, p<0.005). I- was detected in 50% of the samples (75th percentile=5 μg/L) and IO3- was detected in 40% (75th percentile=3 μg/L) of all the samples. To quantify iodine species, tandem ion chromatography and inductively coupled plasma mass spectrometry was applied for the first time in drinking water sources. I- and IO3- peaks were well resolved and have minimum detection limit of 0.4 μg/L and 0.7 μg/L respectively. Organic iodine (Org-I) peaks in select drinking water samples from the nationwide survey were partically resolved ranging from <5 to 40 μg/L. This dissertation provides updated nationwide Br- survey and first ever national I species survey. The data generated through this dissertation will be useful to further Br-/I-DBP formation and toxicity research by providing relevant drinking water sources information. Future research targeting Br- and I- removal is advocated for managing Br-/I-DBPs in watersheds.

Date Created
2021
Agent

Development of Hydrogel-based Porous Desiccants for Atmospheric Water Extraction

161962-Thumbnail Image.png
Description
Atmospheric water extraction (AWE) is an emerging technology to tackle water resource shortage challenges. One such approach to provide fresh water utilizes stimuli-responsive hydrogel-based desiccants to capture the moisture from the air and release it into the liquid form. Typical

Atmospheric water extraction (AWE) is an emerging technology to tackle water resource shortage challenges. One such approach to provide fresh water utilizes stimuli-responsive hydrogel-based desiccants to capture the moisture from the air and release it into the liquid form. Typical gel desiccants are composed of a hygroscopic agent for capturing and a hydrophilic gel matrix for storage. The desorption process can be completed by elevating the temperature above the upper or lower critical solution temperature point to initiate the volume phase transition of either thermo-responsive or photothermal types. This thesis focuses on investigating the structural effect of hydrogels on moisture uptake. Firstly, the main matrix of gel desiccant, poly(N-isopropylacrylamide) hydrogel, was optimized via tuning synthesis temperature and initial monomer concentration. Secondly, a series of hydrogel-based desiccants consisting of a hygroscopic material, vinyl imidazole, and optimized poly(N-isopropylacrylamide) gel matrix were synthesized with different network structures. The moisture uptake result showed that the gel desiccant with an interpenetrating polymeric network (IPN) resulted in the best-performing moisture capturing. The gel desiccant with the best performance will be used as a primary structural unit to evaluate the feasibility of developing a light-responsive gel desiccant to materialize light-trigger moisture desorption for AWE technology in the future.
Date Created
2021
Agent

Treatment of Per- and Polyfluoroalkyl Substances (PFAS) in Semiconductor Wastewaters

161322-Thumbnail Image.png
Description
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals used for a wide variety of products and industrial processes, including being an essential class of chemicals in the fabrication of semiconductors. Proven concerns related to bioaccumulation and toxicity across multiple species

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals used for a wide variety of products and industrial processes, including being an essential class of chemicals in the fabrication of semiconductors. Proven concerns related to bioaccumulation and toxicity across multiple species have resulted in health advisory and regulatory initiatives for PFAS in drinking and wastewaters. Among impacted users of PFAS, the semiconductor industry is in urgent need of technologies to remove PFAS from water. Specifically, they prefer technologies capable of mineralizing PFAS into inorganic fluoride (F-). The goal of this thesis is to compare the effectiveness of photo- versus electrocatalytic treatment in benchtop reactor systems PFAS in industrial wastewater before selecting one technology to investigate comprehensively. First, a model wastewater was developed based upon semiconductor samples to represent water matrices near where PFAS are used and the aggregate Fab effluent, which were then used in batch catalytic experiments. Second, batch experiments with homogenous photocatalysis (UV/SO32-) were found to be more energy-intensive than heterogeneous catalysis using boron-doped diamond (BDD) electrodes, and the latter approach was then studied in-depth. During electrocatalysis, longer chain PFAS (C8; PFOA & PFOS) were observed to degrade faster than C6 and C4 PFAS. This study is the first to report near-complete defluorination of not only C8- and C6- PFAS, but also C4-PFAS, in model wastewaters using BDD electrocatalysis, and the first to report such degradation in real Fab wastewater effluents. Based upon differences in PFAS degradation rates observed in single-solute systems containing only C4 PFAS versus multi-solute systems including C4, C6, and C8 PFAS, it was concluded that the surfactant properties of the longer-chain PFAS created surface films on the BDD electrode surface which synergistically enhanced removal of shorter-chain PFAS. The results from batch experiments that serve as the basis of this thesis will be used to assess the chemical byproducts and their associated bioaccumulation and toxicity. This thesis was aimed at developing an efficient method for the degradation of perfluoroalkyl substances from industrial process waters at realistic concentrations.
Date Created
2021
Agent

Arsenic Sorption by Iron Impregnated Biochar

148174-Thumbnail Image.png
Description

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment that has gained popularity is biochar—a porous, carbon-based substance produced through pyrolysis of biomass in an oxygen-free environment. Arizona State University’s Engineering Projects in Community Service (EPICS) has partnered with communities in Nepal in an attempt to increase biochar production in the area, as it has several valuable applications including water treatment. Biochar’s arsenic adsorption capability will be investigated in this project with the goal of using the biochar that Nepalese communities produce to remove water contaminants. It has been found in scientific literature that biochar is effective in removing heavy metal contaminants from water with the addition of iron through surface activation. Thus, the specific goal of this research was to compare the arsenic adsorption disparity between raw biochar and iron-impregnated biochar. It was hypothesized that after numerous bed volumes pass through a water treatment column, iron from the source water will accumulate on the surface of raw biochar, mimicking the intentionally iron-impregnated biochar and further increasing contaminant uptake. It is thus an additional goal of this project to compare biochar loaded with iron through an iron-spiked water column and biochar impregnated with iron through surface oxidation. For this investigation, the biochar was crushed and sieved to a size between 90 and 100 micrometers. Two samples were prepared: raw biochar and oxidized biochar. The oxidized biochar was impregnated with iron through surface oxidation with potassium permanganate and iron loading. Then, X-ray fluorescence was used to compare the composition of the oxidized biochar with its raw counterpart, indicating approximately 0.5% iron in the raw and 1% iron in the oxidized biochar. The biochar samples were then added to batches of arsenic-spiked water at iron to arsenic concentration ratios of 20 mg/L:1 mg/L and 50 mg/L:1 mg/L to determine adsorption efficiency. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated an 86% removal of arsenic using a 50:1 ratio of iron to arsenic (1.25 g biochar required in 40 mL solution), and 75% removal with a 20:1 ratio (0.5 g biochar required in 40 mL solution). Additional samples were then inserted into a column process apparatus for further adsorption analysis. Again, ICP-MS analysis was performed and the results showed that while both raw and treated biochars were capable of adsorbing arsenic, they were exhausted after less than 70 bed volumes (234 mL), with raw biochar lasting 60 bed volumes (201 mL) and oxidized about 70 bed volumes (234 mL). Further research should be conducted to investigate more affordable and less laboratory-intensive processes to prepare biochar for water treatment.

Date Created
2021-05
Agent

Environmental, Human Health, and Societal Impacts of Nanosilver and Ionic Silver Used in Industrial and Consumer Products

158255-Thumbnail Image.png
Description
Engineered nanomaterials (ENMs) are added to numerous consumer products to enhance their effectiveness, whether it be for environmental remediation, mechanical properties, or as dietary supplements. Uses of ENMs include adding to enhance products, carbon for strength or dielectric properties, silver

Engineered nanomaterials (ENMs) are added to numerous consumer products to enhance their effectiveness, whether it be for environmental remediation, mechanical properties, or as dietary supplements. Uses of ENMs include adding to enhance products, carbon for strength or dielectric properties, silver for antimicrobial properties, zinc oxide for UV sun-blocking properties, titanium dioxide for photocatalysis, or silica for desiccant properties. However, concerns arise from ENM functional properties that can impact the environment and a lack of regulation regarding ENMs leads to potential public exposure to ENMs and results in ill-informed public or manufacturer perceptions of ENMs. My dissertation evaluates the environmental, human health, and societal impacts of using ENMs, with a focus on ionic silver and nanosilver, in consumer and industrial products. Reproducible experiments served as functional assays to assess ENM distributions among various environmental matrices. Functional assay results were visualized using radar plots and aid in a framework to estimate likely ENM disposition in the environment. To assess beneficial uses of ENMs, bromide ion removal from drinking waters to limit disinfection by-product formation was studied. Silver-enabled graphene oxide materials were capable of removing bromide from water, and exhibited less competition from background solutes (e.g. natural organic matter) when compared against solely ionic silver addition to water for bromide removal. To assess complex interactions of ENMs with the microbiome, batch experiments were performed using fecal samples spiked with ionic silver or commercial dietary silver nanoparticles. Dietary nanosilver and ionic silver exposures to the fecal microbiome for 24 hours reduce short chain fatty acid (SCFA) production and changes the relative abundance of the microbiota. To understand the social perceptions of ENMS, statistically rigorous surveys were conducted to assess related perceptions related to the use of ENMs in drinking water treatment devices the general public and, separately, industrial manufacturers. These stakeholders are influenced by costs and efficiency of the technologies, consumer concerns of the safety of technologies, and environmental health and safety of the technologies. This dissertation represents novel research that took an interdisciplinary approach, spanning from wet-lab engineering bench scale testing to social science survey assessments to better understand the environmental, human health, and societal impacts of using ENMs such as nanosilver and ionic silver in industrial processes and consumer products.
Date Created
2020
Agent