Convergence results for two models of interaction
- Author (aut): Theisen, Ryan
- Thesis advisor (ths): Motsch, Sebastien
- Committee member: Lanchier, Nicholas
- Committee member: Kostelich, Eric
- Publisher (pbl): Arizona State University
1/N. ƛ2 is a good estimator of the rate of convergence of the system, in comparison to the value of p used to generate the adjacency matrix..
We review a general class of models for self-organized dynamics based on alignment. The dynamics of such systems is governed solely by interactions among individuals or “agents,” with the tendency to adjust to their “environmental averages.” This, in turn, leads to the formation of clusters, e.g., colonies of ants, flocks of birds, parties of people, rendezvous in mobile networks, etc. A natural question which arises in this context is to ask when and how clusters emerge through the self-alignment of agents, and what types of “rules of engagement” influence the formation of such clusters. Of particular interest to us are cases in which the self-organized behavior tends to concentrate into one cluster, reflecting a consensus of opinions, flocking of birds, fish, or cells, rendezvous of mobile agents, and, in general, concentration of other traits intrinsic to the dynamics. Many standard models for self-organized dynamics in social, biological, and physical sciences assume that the intensity of alignment increases as agents get closer, reflecting a common tendency to align with those who think or act alike. Moreover, “similarity breeds connection” reflects our intuition that increasing the intensity of alignment as the difference of positions decreases is more likely to lead to a consensus. We argue here that the converse is true: when the dynamics is driven by local interactions, it is more likely to approach a consensus when the interactions among agents increase as a function of their difference in position. Heterophily, the tendency to bond more with those who are different rather than with those who are similar, plays a decisive role in the process of clustering. We point out that the number of clusters in heterophilious dynamics decreases as the heterophily dependence among agents increases. In particular, sufficiently strong heterophilious interactions enhance consensus.
We investigate the long time behavior of models of opinion formation. We consider the case of compactly supported interactions between agents which are also non-symmetric, including for instance the so-called Krause model. Because of the finite range of interaction, convergence to a unique consensus is not expected in general. We are nevertheless able to prove the convergence to a final equilibrium state composed of possibly several local consensus. This result had so far only been conjectured through numerical evidence. Because of the non-symmetry in the model, the analysis is delicate and is performed in two steps: First using entropy estimates to prove the formation of stable clusters and then studying the evolution in each cluster. We study both discrete and continuous in time models and give rates of convergence when those are available.