Enumeration Methods and Series Analysis of Self-Avoiding Polygons on the Hexagonal Lattice, with Applications to Self-organizing Particle Systems

132360-Thumbnail Image.png
Description
We consider programmable matter as a collection of simple computational elements (or particles) that self-organize to solve system-wide problems of movement, configuration, and coordination. Here, we focus on the compression problem, in which the particle system gathers as tightly together

We consider programmable matter as a collection of simple computational elements (or particles) that self-organize to solve system-wide problems of movement, configuration, and coordination. Here, we focus on the compression problem, in which the particle system gathers as tightly together as possible, as in a sphere or its equivalent in the presence of some underlying geometry. Within this model a configuration of particles can be represented as a unique closed self-avoiding walk on the triangular lattice. In this paper we will examine the bias parameter of a Markov chain based algorithm that solves the compression problem under the geometric amoebot model, for particle systems that begin in a connected configuration with no holes. This bias parameter, $\lambda$, determines the behavior of the algorithm. It has been shown that for $\lambda > 2+\sqrt{2}$, with all but exponentially small probability, the algorithm achieves compression. Additionally the same algorithm can be used for expansion for small values of $\lambda$; in particular, for all $0 < \lambda < \sqrt{\tau}$, where $\lim_{n\to\infty} {(p_n)^{1
}}=\tau$. This research will focus on improving approximations on the lower bound of $\tau$. Toward this end we will examine algorithmic enumeration, and series analysis for self-avoiding polygons.
Date Created
2019-05
Agent

Some Turán-type problems in extremal graph theory

156583-Thumbnail Image.png
Description
Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that any graph on n vertices with m edges contains F

Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that any graph on n vertices with m edges contains F as a subgraph. Then the forbidden subgraph problem asks to find ex(n; F ) for various graphs F . The question can be further generalized by asking for the extreme values of other graph parameters like minimum degree, maximum degree, or connectivity. We call this type of question a Tura ́n-type problem. In this thesis, we will study Tura ́n-type problems and their variants for graphs and hypergraphs.

Chapter 2 contains a Tura ́n-type problem for cycles in dense graphs. The main result in this chapter gives a tight bound for the minimum degree of a graph which guarantees existence of disjoint cycles in the case of dense graphs. This, in particular, answers in the affirmative a question of Faudree, Gould, Jacobson and Magnant in the case of dense graphs.

In Chapter 3, similar problems for trees are investigated. Recently, Faudree, Gould, Jacobson and West studied the minimum degree conditions for the existence of certain spanning caterpillars. They proved certain bounds that guarantee existence of spanning caterpillars. The main result in Chapter 3 significantly improves their result and answers one of their questions by proving a tight minimum degree bound for the existence of such structures.

Chapter 4 includes another Tur ́an-type problem for loose paths of length three in a 3-graph. As a corollary, an upper bound for the multi-color Ramsey number for the loose path of length three in a 3-graph is achieved.
Date Created
2018
Agent

On the uncrossing partial order on matchings

156198-Thumbnail Image.png
Description
The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$ if and only if $\tau'$ is obtained by resolving a

The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$ if and only if $\tau'$ is obtained by resolving a crossing of $\tau$. %This partial order has been studied by Alman-Lian-Tran, Huang-Wen-Xie, Kenyon, and Lam. %The posets $P_n$ emerged from studies of circular planar electrical networks. Circular planar electrical networks are finite weighted undirected graphs embedded into a disk, with boundary vertices and interior vertices. By Curtis-Ingerman-Morrow and de Verdi\`ere-Gitler-Vertigan, the electrical networks can be encoded with response matrices. By Lam the space of response matrices for electrical networks has a cell structure, and this cell structure can be described by the uncrossing partial orders. %Lam proves that the posets can be identified with dual Bruhat order on affine permutations of type $(n,2n)$. Using this identification, Lam proves the poset $\hat{P}_n$, the uncrossing poset $P_n$ with a unique minimum element $\hat{0}$ adjoined, is Eulerian. This thesis consists of two sets of results: (1) flag enumeration in intervals in the uncrossing poset $P_n$ and (2) cyclic sieving phenomenon on the set $P_n$.

I identify elements in $P_n$ with affine permutations of type $(0,2n)$. %This identification enables us to explicitly describe the elements in $P_n$ with the elements in $\mathcal{MP}_n$.

Using this identification, I adapt a technique in Reading for finding recursions for the cd-indices of intervals in Bruhat order of Coxeter groups to the uncrossing poset $P_n$. As a result, I produce recursions for the cd-indices of intervals in the uncrossing poset $P_n$. I also obtain a recursion for the ab-indices of intervals in the poset $\hat{P}_n$, the poset $P_n$ with a unique minimum $\hat0$ adjoined. %We define an induced subposet $\mathcal{MP}_n$ of the affine permutations under Bruhat order.

Reiner-Stanton-White defined the cyclic sieving phenomenon (CSP) associated to a finite cyclic group action on a finite set and a polynomial. Sagan observed the CSP on the set of non-crossing matchings with the $q$-Catalan polynomial. Bowling-Liang presented similar results on the set of $k$-crossing matchings for $1\leq k \leq 3$. In this dissertation, I focus on the set of all matchings on $[2n]:=\{1,2,\dots,2n\}$. I find the number of matchings fixed by $\frac{2\pi}{d}$ rotations for $d|2n$. I then find the polynomial $X_n(q)$ such that the set of matchings together with $X_n(q)$ and the cyclic group of order $2n$ exhibits the CSP.
Date Created
2018
Agent

A Statistic on a Super Catalan Structure

133379-Thumbnail Image.png
Description
The Super Catalan numbers are a known set of numbers which have so far eluded a combinatorial interpretation. Several weighted interpretations have appeared since their discovery, one of which was discovered by William Kuszmaul in 2017. In this paper, we

The Super Catalan numbers are a known set of numbers which have so far eluded a combinatorial interpretation. Several weighted interpretations have appeared since their discovery, one of which was discovered by William Kuszmaul in 2017. In this paper, we connect the weighted Super Catalan structure created previously by Kuszmaul and a natural $q$-analogue of the Super Catalan numbers. We do this by creating a statistic $\sigma$ for which the $q$ Super Catalan numbers, $S_q(m,n)=\sum_X (-1)^{\mu(X)} q^{\sigma(X)}$. In doing so, we take a step towards finding a strict combinatorial interpretation for the Super Catalan numbers.
Date Created
2018-05
Agent

Toward enumerating the chains of maximum length of Cambrian and m-eralized Cambrian lattices

155340-Thumbnail Image.png
Description
The Cambrian lattice corresponding to a Coxeter element c of An, denoted Camb(c),

is the subposet of An induced by the c-sortable elements, and the m-eralized Cambrian

lattice corresponding to c, denoted Cambm(c), is dened as a subposet of the

braid group accompanied

The Cambrian lattice corresponding to a Coxeter element c of An, denoted Camb(c),

is the subposet of An induced by the c-sortable elements, and the m-eralized Cambrian

lattice corresponding to c, denoted Cambm(c), is dened as a subposet of the

braid group accompanied with the right weak ordering induced by the c-sortable elements

under certain conditions. Both of these families generalize the well-studied

Tamari lattice Tn rst introduced by D. Tamari in 1962. S. Fishel and L. Nelson

enumerated the chains of maximum length of Tamari lattices.

In this dissertation, I study the chains of maximum length of the Cambrian and

m-eralized Cambrian lattices, precisely, I enumerate these chains in terms of other

objects, and then nd formulas for the number of these chains for all m-eralized

Cambrian lattices of A1, A2, A3, and A4. Furthermore, I give an alternative proof

for the number of chains of maximum length of the Tamari lattice Tn, and provide

conjectures and corollaries for the number of these chains for all m-eralized Cambrian

lattices of A5.
Date Created
2017
Agent

On chains in the Tamari lattice

155093-Thumbnail Image.png
Description
The Tamari lattice T(n) was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Since then it has been studied in various areas of mathematics including

The Tamari lattice T(n) was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Since then it has been studied in various areas of mathematics including cluster algebras, discrete geometry, algebraic combinatorics, and Catalan theory. Although in several related lattices the number of maximal chains is known, the enumeration of these chains in Tamari lattices is still an open problem.

This dissertation defines a partially-ordered set on equivalence classes of certain saturated chains of T(n) called the Tamari Block poset, TB(lambda). It further proves TB(lambda) is a graded lattice. It then shows for lambda = (n-1,...,2,1) TB(lambda) is anti-isomorphic to the Higher Stasheff-Tamari orders in dimension 3 on n+2 elements. It also investigates enumeration questions involving TB(lambda), and proves other structural results along the way.
Date Created
2016
Agent

Toward the enumeration of maximal chains in the Tamari lattices

154926-Thumbnail Image.png
Description
The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of n+1 objects, with a cover relation based on the associativity

The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Despite their interesting aspects and the attention they have received, a formula for the number of maximal chains in the Tamari lattices is still unknown. The purpose of this thesis is to convey my results on progress toward the solution of this problem and to discuss future work.

A few years ago, Bergeron and Préville-Ratelle generalized the Tamari lattices to the m-Tamari lattices. The original Tamari lattices T(n) are the case m=1. I establish a bijection between maximum length chains in the m-Tamari lattices and standard m-shifted Young tableaux. Using Thrall’s formula, I thus derive the formula for the number of maximum length chains in T(n).

For each i greater or equal to -1 and for all n greater or equal to 1, I define C(i,n) to be the set of maximal chains of length n+i in T(n). I establish several properties of maximal chains (treated as tableaux) and identify a particularly special property: each maximal chain may or may not possess a plus-full-set. I show, surprisingly, that for all n greater or equal to 2i+4, each member of C(i,n) contains a plus-full-set. Utilizing this fact and a collection of maps, I obtain a recursion for the number of elements in C(i,n) and an explicit formula based on predetermined initial values. The formula is a polynomial in n of degree 3i+3. For example, the number of maximal chains of length n in T(n) is n choose 3.

I discuss current work and future plans involving certain equivalence classes of maximal chains in the Tamari lattices. If a maximal chain may be obtained from another by swapping a pair of consecutive edges with another pair in the Hasse diagram, the two maximal chains are said to differ by a square move. Two maximal chains are said to be in the same equivalence class if one may be obtained from the other by making a set of square moves.
Date Created
2016
Agent

On choosability and paintability of graphs

153556-Thumbnail Image.png
Description
Let $G=(V,E)$ be a graph. A \emph{list assignment} $L$ for $G$ is a function from

$V$ to subsets of the natural numbers. An $L$-\emph{coloring} is a function $f$

with domain $V$ such that $f(v)\in L(v)$ for all vertices $v\in V$ and $f(x)\ne

Let $G=(V,E)$ be a graph. A \emph{list assignment} $L$ for $G$ is a function from

$V$ to subsets of the natural numbers. An $L$-\emph{coloring} is a function $f$

with domain $V$ such that $f(v)\in L(v)$ for all vertices $v\in V$ and $f(x)\ne f(y)$

whenever $xy\in E$. If $|L(v)|=t$ for all $v\in V$ then $L$ is a $t$-\emph{list

assignment}. The graph $G$ is $t$-choosable if for every $t$-list assignment $L$

there is an $L$-coloring. The least $t$ such that $G$ is $t$-choosable is called

the list chromatic number of $G$, and is denoted by $\ch(G)$. The complete multipartite

graph with $k$ parts, each of size $s$ is denoted by $K_{s*k}$. Erd\H{o}s et al.

suggested the problem of determining $\ensuremath{\ch(K_{s*k})}$, and showed that

$\ch(K_{2*k})=k$. Alon gave bounds of the form $\Theta(k\log s)$. Kierstead proved

the exact bound $\ch(K_{3*k})=\lceil\frac{4k-1}{3}\rceil$. Here it is proved that

$\ch(K_{4*k})=\lceil\frac{3k-1}{2}\rceil$.

An online version of the list coloring problem was introduced independently by Schauz

and Zhu. It can be formulated as a game between two players, Alice and Bob. Alice

designs lists of colors for all vertices, but does not tell Bob, and is allowed to

change her mind about unrevealed colors as the game progresses. On her $i$-th turn

Alice reveals all vertices with $i$ in their list. On his $i$-th turn Bob decides,

irrevocably, which (independent set) of these vertices to color with $i$. For a

function $l$ from $V$ to the natural numbers, Bob wins the $l$-\emph{game} if

eventually he colors every vertex $v$ before $v$ has had $l(v)+1$ colors of its

list revealed by Alice; otherwise Alice wins. The graph $G$ is $l$-\emph{online

choosable} or \emph{$l$-paintable} if Bob has a strategy to win the $l$-game. If

$l(v)=t$ for all $v\in V$ and $G$ is $l$-paintable, then $G$ is t-paintable.

The \emph{online list chromatic number }of $G$ is the least $t$ such that $G$

is $t$-paintable, and is denoted by $\ensuremath{\ch^{\mathrm{OL}}(G)}$. Evidently,

$\ch^{\mathrm{OL}}(G)\geq\ch(G)$. Zhu conjectured that the gap $\ch^{\mathrm{OL}}(G)-\ch(G)$

can be arbitrarily large. However there are only a few known examples with this gap

equal to one, and none with larger gap. This conjecture is explored in this thesis.

One of the obstacles is that there are not many graphs whose exact list coloring

number is known. This is one of the motivations for establishing new cases of Erd\H{o}s'

problem. Here new examples of graphs with gap one are found, and related technical

results are developed as tools for attacking Zhu's conjecture.

The square $G^{2}$ of a graph $G$ is formed by adding edges between all vertices

at distance $2$. It was conjectured that every graph $G$ satisfies $\chi(G^{2})=\ch(G^{2})$.

This was recently disproved for specially constructed graphs. Here it is shown that

a graph arising naturally in the theory of cellular networks is also a counterexample.
Date Created
2015
Agent

One- and two-variable p-adic measures in Iwasawa theory

153445-Thumbnail Image.png
Description
In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and

In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and Schneps independently adapted Sinnott's techniques to the case of $p$-adic $L$-functions associated to elliptic curves with complex multiplication (CM) by realizing these $p$-adic $L$-functions as $Gamma$-transforms of certain $p$-adic rational function measures. The results in the CM case give the vanishing of the Iwasawa $mu$-invariant for certain $mathbb{Z}_p$-extensions of imaginary quadratic fields constructed from torsion points of CM elliptic curves.

In this thesis, I develop the theory of $p$-adic measures on $mathbb{Z}_p^d$, with particular interest given to the case of $d>1$. Although I introduce these measures within the context of $p$-adic integration, this study includes a strong emphasis on the interpretation of $p$-adic measures as $p$-adic power series. With this dual perspective, I describe $p$-adic analytic operations as maps on power series; the most important of these operations is the multivariate $Gamma$-transform on $p$-adic measures.

This thesis gives new significance to product measures, and in particular to the use of product measures to construct measures on $mathbb{Z}_p^2$ from measures on $mathbb{Z}_p$. I introduce a subring of pseudo-polynomial measures on $mathbb{Z}_p^2$ which is closed under the standard operations on measures, including the $Gamma$-transform. I obtain results on the Iwasawa-invariants of such pseudo-polynomial measures, and use these results to deduce certain continuity results for the $Gamma$-transform. As an application, I establish the vanishing of the Iwasawa $mu$-invariant of Yager's two-variable $p$-adic $L$-function from measure theoretic considerations.
Date Created
2015
Agent

Chains of Maximum Length in the Tamari Lattice

129382-Thumbnail Image.png
Description

The Tamari lattice Tn was originally defined on bracketings of a set of n + 1 objects, with a cover relation based on the associativity rule in one direction. Although in several related lattices, the number of maximal chains is

The Tamari lattice Tn was originally defined on bracketings of a set of n + 1 objects, with a cover relation based on the associativity rule in one direction. Although in several related lattices, the number of maximal chains is known, quoting Knuth, “The enumeration of such paths in Tamari lattices remains mysterious.”
The lengths of maximal chains vary over a great range. In this paper, we focus on the chains with maximum length in these lattices. We establish a bijection between the maximum length chains in the Tamari lattice and the set of standard shifted tableaux of staircase shape. We thus derive an explicit formula for the number of maximum length chains, using the Thrall formula for the number of shifted tableaux. We describe the relationship between chains of maximum length in the Tamari lattice and certain maximal chains in weak Bruhat order on the symmetric group, using standard Young tableaux. Additionally, recently, Bergeron and Pr ́eville-Ratelle introduced a generalized Tamari lattice. Some of the results mentioned above carry over to their generalized Tamari lattice.

Date Created
2014-10-01
Agent