Description
The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$ if and only if $\tau'$ is obtained by resolving a crossing of $\tau$. %This partial order has been studied by Alman-Lian-Tran, Huang-Wen-Xie, Kenyon, and Lam. %The posets $P_n$ emerged from studies of circular planar electrical networks. Circular planar electrical networks are finite weighted undirected graphs embedded into a disk, with boundary vertices and interior vertices. By Curtis-Ingerman-Morrow and de Verdi\`ere-Gitler-Vertigan, the electrical networks can be encoded with response matrices. By Lam the space of response matrices for electrical networks has a cell structure, and this cell structure can be described by the uncrossing partial orders. %Lam proves that the posets can be identified with dual Bruhat order on affine permutations of type $(n,2n)$. Using this identification, Lam proves the poset $\hat{P}_n$, the uncrossing poset $P_n$ with a unique minimum element $\hat{0}$ adjoined, is Eulerian. This thesis consists of two sets of results: (1) flag enumeration in intervals in the uncrossing poset $P_n$ and (2) cyclic sieving phenomenon on the set $P_n$.
I identify elements in $P_n$ with affine permutations of type $(0,2n)$. %This identification enables us to explicitly describe the elements in $P_n$ with the elements in $\mathcal{MP}_n$.
Using this identification, I adapt a technique in Reading for finding recursions for the cd-indices of intervals in Bruhat order of Coxeter groups to the uncrossing poset $P_n$. As a result, I produce recursions for the cd-indices of intervals in the uncrossing poset $P_n$. I also obtain a recursion for the ab-indices of intervals in the poset $\hat{P}_n$, the poset $P_n$ with a unique minimum $\hat0$ adjoined. %We define an induced subposet $\mathcal{MP}_n$ of the affine permutations under Bruhat order.
Reiner-Stanton-White defined the cyclic sieving phenomenon (CSP) associated to a finite cyclic group action on a finite set and a polynomial. Sagan observed the CSP on the set of non-crossing matchings with the $q$-Catalan polynomial. Bowling-Liang presented similar results on the set of $k$-crossing matchings for $1\leq k \leq 3$. In this dissertation, I focus on the set of all matchings on $[2n]:=\{1,2,\dots,2n\}$. I find the number of matchings fixed by $\frac{2\pi}{d}$ rotations for $d|2n$. I then find the polynomial $X_n(q)$ such that the set of matchings together with $X_n(q)$ and the cyclic group of order $2n$ exhibits the CSP.
I identify elements in $P_n$ with affine permutations of type $(0,2n)$. %This identification enables us to explicitly describe the elements in $P_n$ with the elements in $\mathcal{MP}_n$.
Using this identification, I adapt a technique in Reading for finding recursions for the cd-indices of intervals in Bruhat order of Coxeter groups to the uncrossing poset $P_n$. As a result, I produce recursions for the cd-indices of intervals in the uncrossing poset $P_n$. I also obtain a recursion for the ab-indices of intervals in the poset $\hat{P}_n$, the poset $P_n$ with a unique minimum $\hat0$ adjoined. %We define an induced subposet $\mathcal{MP}_n$ of the affine permutations under Bruhat order.
Reiner-Stanton-White defined the cyclic sieving phenomenon (CSP) associated to a finite cyclic group action on a finite set and a polynomial. Sagan observed the CSP on the set of non-crossing matchings with the $q$-Catalan polynomial. Bowling-Liang presented similar results on the set of $k$-crossing matchings for $1\leq k \leq 3$. In this dissertation, I focus on the set of all matchings on $[2n]:=\{1,2,\dots,2n\}$. I find the number of matchings fixed by $\frac{2\pi}{d}$ rotations for $d|2n$. I then find the polynomial $X_n(q)$ such that the set of matchings together with $X_n(q)$ and the cyclic group of order $2n$ exhibits the CSP.
Details
Title
- On the uncrossing partial order on matchings
Contributors
- Kim, Younghwan (Author)
- Fishel, Susanna (Thesis advisor)
- Bremner, Andrew (Committee member)
- Czygrinow, Andrzej (Committee member)
- Kierstead, Henry (Committee member)
- Paupert, Julien (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2018
- bibliographyIncludes bibliographical references (pages
- Field of study: Mathematics
Citation and reuse
Statement of Responsibility
by Younghwan Kim