Finding Elliptic Curves with Many Integral Points

Description
In this paper we outline a method of producing reduced elliptic curves with many integral points and provide the results of the outlined computations, including several curves with hundreds of integral points. The first three sections give back-ground and describe

In this paper we outline a method of producing reduced elliptic curves with many integral points and provide the results of the outlined computations, including several curves with hundreds of integral points. The first three sections give back-ground and describe our work with integral points on elliptic curves. The last section is unrelated to elliptic curves and provides a complete classification of self-descriptive numbers.
Date Created
2020-12
Agent

Representing Certain Continued Fraction AF Algebras as C*-algebras of Categories of Paths and non-AF Groupoids

158200-Thumbnail Image.png
Description
C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-algebra is one which is isomorphic to an inductive limit of finite dimensional C*-algebras. In 2012, D.G.

C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-algebra is one which is isomorphic to an inductive limit of finite dimensional C*-algebras. In 2012, D.G. Evans and A. Sims proposed an analogue of a cycle for higher rank graphs and show that the lack of such an object is necessary for the associated C*-algebra to be AF. Here, I give a class of examples of categories of paths whose associated C*-algebras are Morita equivalent to a large number of periodic continued fraction AF algebras, first described by Effros and Shen in 1980. I then provide two examples which show that the analogue of cycles proposed by Evans and Sims is neither a necessary nor a sufficient condition for the C*-algebra of a category of paths to be AF.
Date Created
2020
Agent

An Analysis of The Quantum-Resistant Supersingular Isogeny Based Elliptic Curve Cryptographic Algorithm

131781-Thumbnail Image.png
Description
In the modern world with the ever growing importance of technology, the challenge of information security is of increasing importance. Cryptographic algorithms used to encode information stored and transmitted over the internet must be constantly improving as methodology and technology

In the modern world with the ever growing importance of technology, the challenge of information security is of increasing importance. Cryptographic algorithms used to encode information stored and transmitted over the internet must be constantly improving as methodology and technology for cyber attacks improve. RSA and Elliptic Curve cryptosystems such as El Gamal or Diffie-Hellman key exchange are often used as secure asymmetric cryptographic algorithms. However, quantum computing threatens the security of these algorithms. A relatively new algorithm that is based on isogenies between elliptic curves has been proposed in response to this threat. The new algorithm is thought to be quantum resistant as it uses isogeny walks instead of point addition to generate a shared secret key. In this paper we will analyze this algorithm in an attempt to understand the theory behind it. A main goal is to create isogeny graphs to visualize degree 2 and 3 isogeny walks that can be taken between supersingular elliptic curves over small fields to get a better understanding of the workings and security of the algorithm.
Date Created
2020-05
Agent

On K-derived quartics and invariants of local fields

Description
This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that

factors into linear factors over $K$, as do all of its derivatives. Such a polynomial

is

This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that

factors into linear factors over $K$, as do all of its derivatives. Such a polynomial

is said to be {\it proper} if

its roots are distinct. An unresolved question in the literature is

whether or not there exists a proper $\Q$-derived polynomial of degree 4. Some examples

are known of proper $K$-derived quartics for a quadratic number field $K$, although other

than $\Q(\sqrt{3})$, these fields have quite large discriminant. (The second known field

is $\Q(\sqrt{3441})$.) I will describe a search for quadratic fields $K$

over which there exist proper $K$-derived quartics. The search finds examples for

$K=\Q(\sqrt{D})$ with $D=...,-95,-41,-19,21,31,89,...$.\\

For the second topic, by Krasner's lemma there exist a finite number of degree $n$ extensions of $\Q_p$. Jones and Roberts have developed a database recording invariants of $p$-adic extensions for low degree $n$. I will contribute data to this database by computing the Galois slope content, inertia subgroup, and Galois mean slope for a variety of wildly ramified extensions of composite degree using the idea of \emph{global splitting models}.
Date Created
2019
Agent

Some diophantine problems

157261-Thumbnail Image.png
Description
Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an

Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat.

The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals.

The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves.
Date Created
2019
Agent

On the uncrossing partial order on matchings

156198-Thumbnail Image.png
Description
The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$ if and only if $\tau'$ is obtained by resolving a

The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$ if and only if $\tau'$ is obtained by resolving a crossing of $\tau$. %This partial order has been studied by Alman-Lian-Tran, Huang-Wen-Xie, Kenyon, and Lam. %The posets $P_n$ emerged from studies of circular planar electrical networks. Circular planar electrical networks are finite weighted undirected graphs embedded into a disk, with boundary vertices and interior vertices. By Curtis-Ingerman-Morrow and de Verdi\`ere-Gitler-Vertigan, the electrical networks can be encoded with response matrices. By Lam the space of response matrices for electrical networks has a cell structure, and this cell structure can be described by the uncrossing partial orders. %Lam proves that the posets can be identified with dual Bruhat order on affine permutations of type $(n,2n)$. Using this identification, Lam proves the poset $\hat{P}_n$, the uncrossing poset $P_n$ with a unique minimum element $\hat{0}$ adjoined, is Eulerian. This thesis consists of two sets of results: (1) flag enumeration in intervals in the uncrossing poset $P_n$ and (2) cyclic sieving phenomenon on the set $P_n$.

I identify elements in $P_n$ with affine permutations of type $(0,2n)$. %This identification enables us to explicitly describe the elements in $P_n$ with the elements in $\mathcal{MP}_n$.

Using this identification, I adapt a technique in Reading for finding recursions for the cd-indices of intervals in Bruhat order of Coxeter groups to the uncrossing poset $P_n$. As a result, I produce recursions for the cd-indices of intervals in the uncrossing poset $P_n$. I also obtain a recursion for the ab-indices of intervals in the poset $\hat{P}_n$, the poset $P_n$ with a unique minimum $\hat0$ adjoined. %We define an induced subposet $\mathcal{MP}_n$ of the affine permutations under Bruhat order.

Reiner-Stanton-White defined the cyclic sieving phenomenon (CSP) associated to a finite cyclic group action on a finite set and a polynomial. Sagan observed the CSP on the set of non-crossing matchings with the $q$-Catalan polynomial. Bowling-Liang presented similar results on the set of $k$-crossing matchings for $1\leq k \leq 3$. In this dissertation, I focus on the set of all matchings on $[2n]:=\{1,2,\dots,2n\}$. I find the number of matchings fixed by $\frac{2\pi}{d}$ rotations for $d|2n$. I then find the polynomial $X_n(q)$ such that the set of matchings together with $X_n(q)$ and the cyclic group of order $2n$ exhibits the CSP.
Date Created
2018
Agent

A Synthesis on Fermat's Last Theorem

134742-Thumbnail Image.png
Description
Pierre de Fermat, an amateur mathematician, set upon the mathematical world a challenge so difficult it took 357 years to prove. This challenge, known as Fermat's Last Theorem, has many different ways of being expressed, but it simply states that

Pierre de Fermat, an amateur mathematician, set upon the mathematical world a challenge so difficult it took 357 years to prove. This challenge, known as Fermat's Last Theorem, has many different ways of being expressed, but it simply states that for $n > 2$, the equation $x^n + y^n = z^n$ has no nontrivial solution. The first set of attempts of proofs came from mathematicians using the essentially elementary tools provided by number theory: the notable mathematicians were Leonhard Euler, Sophie Germain and Ernst Kummer. Kummer was the final mathematician to try to use essentially elementary number theory as the basis for his proof and even exclaimed that Fermat's Last Theorem could not be solved using number theory alone; Kummer claimed that greater mathematics would have to be developed in order to prove this ever-growing mystery. The 20th century arrives and two Japanese mathematicians, Goro Shimura and Yutaka Taniyama, shock the world by claiming two highly distinct branches of mathematics, elliptic curves and modular forms, were in fact one and the same. Gerhard Frey then took this claim to the extreme by stating that this claim, the Taniyama-Shimura conjecture, was the necessary link to finally prove Fermat's Last Theorem was true. Frey's statement was then validated by Kenneth Ribet by proving that the Frey Curve could not indeed be a modular form. The final piece of the puzzle placed, the English mathematician Andrew Wiles embarked on a 7 year journey to prove Fermat's Last Theorem as now the the proof of the theorem rested in his area of expertise, that being elliptic curves. In 1994, Wiles published his complete proof of Fermat's Last Theorem, putting an end to one of mathematics' greatest mysteries.
Date Created
2016-12
Agent

One- and two-variable p-adic measures in Iwasawa theory

153445-Thumbnail Image.png
Description
In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and

In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and Schneps independently adapted Sinnott's techniques to the case of $p$-adic $L$-functions associated to elliptic curves with complex multiplication (CM) by realizing these $p$-adic $L$-functions as $Gamma$-transforms of certain $p$-adic rational function measures. The results in the CM case give the vanishing of the Iwasawa $mu$-invariant for certain $mathbb{Z}_p$-extensions of imaginary quadratic fields constructed from torsion points of CM elliptic curves.

In this thesis, I develop the theory of $p$-adic measures on $mathbb{Z}_p^d$, with particular interest given to the case of $d>1$. Although I introduce these measures within the context of $p$-adic integration, this study includes a strong emphasis on the interpretation of $p$-adic measures as $p$-adic power series. With this dual perspective, I describe $p$-adic analytic operations as maps on power series; the most important of these operations is the multivariate $Gamma$-transform on $p$-adic measures.

This thesis gives new significance to product measures, and in particular to the use of product measures to construct measures on $mathbb{Z}_p^2$ from measures on $mathbb{Z}_p$. I introduce a subring of pseudo-polynomial measures on $mathbb{Z}_p^2$ which is closed under the standard operations on measures, including the $Gamma$-transform. I obtain results on the Iwasawa-invariants of such pseudo-polynomial measures, and use these results to deduce certain continuity results for the $Gamma$-transform. As an application, I establish the vanishing of the Iwasawa $mu$-invariant of Yager's two-variable $p$-adic $L$-function from measure theoretic considerations.
Date Created
2015
Agent

Constructions of Diagonal Quartic and Sextic Surfaces With Infinitely Many Rational Points

129489-Thumbnail Image.png
Description

In this paper, we construct several infinite families of diagonal quartic surfaces ax4 + by4 + cz4 + dw4 = 0 (where a, b, c, d are non-zero integers) with infinitely many rational points and satisfying the condition abcd is

In this paper, we construct several infinite families of diagonal quartic surfaces ax4 + by4 + cz4 + dw4 = 0 (where a, b, c, d are non-zero integers) with infinitely many rational points and satisfying the condition abcd is not a square. In particular, we present an infinite family of diagonal quartic surfaces defined over ℚ with Picard number equal to one and possessing infinitely many rational points. Further, we present some sextic surfaces of type ax6 + by6 + cz6 + dwi = 0, i = 2, 3, or 6, with infinitely many rational points.

Date Created
2014-11-01
Agent

On minimal levels of Iwasawa towers

152050-Thumbnail Image.png
Description
In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$

In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group) be the $\epsilon_i$-eigenspace component of the $p$-Sylow subgroup of the class group of the field at the $m$-th level in a $\mathbb{Z}_p$-extension; and let $IACG^i_m$ (Iwasawa analytic class group) be ${\mathbb{Z}_p[[T]]/((1+T)^{p^m}-1,f(T,\omega^{1-i}))}$, where $f$ is the associated Iwasawa power series. It is expected that $CG_m^i$ and $IACG^i_m$ be isomorphic, providing us with a powerful connection between algebraic and analytic techniques; however, as of yet, this isomorphism is unestablished in general. I consider the existence and the properties of an exact sequence $$0\longrightarrow\ker{\longrightarrow}CG_m^i{\longrightarrow}IACG_m^i{\longrightarrow}\textrm{coker}\longrightarrow0.$$ In the case of a $\mathbb{Z}_p$-extension where the Main Conjecture is established, there exists a pseudo-isomorphism between the respective inverse limits of $CG_m^i$ and $IACG_m^i$. I consider conditions for when such a pseudo-isomorphism immediately gives the existence of the desired exact sequence, and I also consider work-around methods that preserve cardinality for otherwise. However, I primarily focus on constructing conditions to verify if a given $m$ is sufficiently large that the kernel and cokernel of the above exact sequence have become well-behaved, providing similarity of growth both in the size and in the structure of $CG_m^i$ and $IACG_m^i$; as well as conditions to determine if any such $m$ exists. The primary motivating idea is that if $IACG_m^i$ is relatively easy to work with, and if the relationship between $CG_m^i$ and $IACG_m^i$ is understood; then $CG_m^i$ becomes easier to work with. Moreover, while the motivating framework is stated concretely in terms of the cyclotomic $\mathbb{Z}_p$-extension of $p$-power roots of unity, all results are generally applicable to arbitrary $\mathbb{Z}_p$-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet abstracted, algebraic results on maps between inverse limits.
Date Created
2013
Agent