133379-Thumbnail Image.png
Description
The Super Catalan numbers are a known set of numbers which have so far eluded a combinatorial interpretation. Several weighted interpretations have appeared since their discovery, one of which was discovered by William Kuszmaul in 2017. In this paper, we

The Super Catalan numbers are a known set of numbers which have so far eluded a combinatorial interpretation. Several weighted interpretations have appeared since their discovery, one of which was discovered by William Kuszmaul in 2017. In this paper, we connect the weighted Super Catalan structure created previously by Kuszmaul and a natural $q$-analogue of the Super Catalan numbers. We do this by creating a statistic $\sigma$ for which the $q$ Super Catalan numbers, $S_q(m,n)=\sum_X (-1)^{\mu(X)} q^{\sigma(X)}$. In doing so, we take a step towards finding a strict combinatorial interpretation for the Super Catalan numbers.


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Download count: 2

Details

Title
  • A Statistic on a Super Catalan Structure
Contributors
Date Created
2018-05
Resource Type
  • Text
  • Machine-readable links