An Investigation into the Relationships Among Teachers’ Mathematical Meanings for Teaching, Commitment to Quantitative Reasoning, and Decentering Actions

187684-Thumbnail Image.png
Description
Over the past thirty years, research on teachers’ mathematical knowledge for teaching (MKT) has developed and grown in popularity as an area of focus for improving mathematics teaching and students’ learning. Many scholars have investigated types of knowledge teachers use

Over the past thirty years, research on teachers’ mathematical knowledge for teaching (MKT) has developed and grown in popularity as an area of focus for improving mathematics teaching and students’ learning. Many scholars have investigated types of knowledge teachers use when teaching and the relationship between teacher knowledge and student performance. However, few researchers have studied the sources of teachers’ pedagogical decisions and actions and some studies have reported that advances in teachers’ mathematical meanings does not necessarily lead to a teacher conveying strong meanings to students. It has also been reported that a teacher’s ways of thinking about teaching an idea and actions to decenter can influence the teacher’s interactions with students.This document presents three papers detailing a multiple-case study that constitutes my dissertation. The first paper reviews the constructs researchers have used to investigate teachers’ knowledge base. This paper also provides a characterization of the first case’s mathematical meaning for teaching angle measure and the impact of her meaning on her interactions with students while teaching her angle measure lessons. The second paper examines another instructor’s meaning for an angle and its measure and illustrates the symbiotic relationship between the teacher’s mathematical meanings for teaching and decentering actions. This paper also characterizes how an instructor’s commitment to quantitative reasoning influences the teacher’s instructional orientation and instructional actions. Finally, the third paper includes a cross-case analysis of the two instructors’ mathematical meanings for teaching sine function and their enacted teaching practices, including their choice of tasks, interactions with students, and explanations while teaching their sine function lessons.
Date Created
2023
Agent

Exponential Growth and Online Learning Environments: Designing for and Studying the Development of Student Meanings in Online Courses

156865-Thumbnail Image.png
Description
This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and discuss the implications of these uses for interpreting and leveraging results to produce empirically tested learning trajectories. From my summary and analysis I develop two recommendations for the cognitive researchers developing empirically supported learning trajectories. (1) A researcher should frame his/her work, and analyze others’ work, within the researcher’s image of a broadly coherent trajectory for student learning and (2) that the field should work towards a common understanding for the meaning of a hypothetical learning trajectory.

In Paper 2 I argue that prior research in online learning has tested the impact of online courses on measures such as student retention rates, satisfaction scores, and GPA but that research is needed to describe the meanings students construct for mathematical ideas researchers have identified as critical to their success in future math courses and other STEM fields. This paper discusses the need for a new focus in studying online mathematics learning and calls for cognitive researchers to begin developing a productive methodology for examining the meanings students construct while engaged in online lessons.

Paper 3 describes the online Precalculus course intervention we designed around measurement imagery and quantitative reasoning as themes that unite topics across units. I report results relative to the meanings students developed for exponential functions and related ideas (such as percent change and growth factors) while working through lessons in the intervention. I provide a conceptual analysis guiding its design and discuss pre-test and pre-interview results, post-test and post-interview results, and observations from student behaviors while interacting with lessons. I demonstrate that the targeted meanings can be productive for students, show common unproductive meanings students possess as they enter Precalculus, highlight challenges and opportunities in teaching and learning in the online environment, and discuss needed adaptations to the intervention and future research opportunities informed by my results.
Date Created
2018
Agent

Developing Elementary Teachers' Knowledge About Functions and Rate of Change Through Modeling

129307-Thumbnail Image.png
Description

The purpose of this article is to describe the development of elementary school teachers’ mathematical knowledge for teaching as they participated in a Modeling Instruction environment that placed heavy emphasis on improving their subject-matter knowledge as a basis for affecting

The purpose of this article is to describe the development of elementary school teachers’ mathematical knowledge for teaching as they participated in a Modeling Instruction environment that placed heavy emphasis on improving their subject-matter knowledge as a basis for affecting the development of their pedagogical content knowledge. We investigate the development of the teachers’ content knowledge and pedagogical content knowledge by considering the results of our iterative revisions with supporting documentation of the insights we made as we refined the course to explore teachers’ knowledge. We conclude that Modeling Instruction helped the teachers conceive of mathematics as a tool to explain scientific phenomena and provided the teachers with opportunities to reflect upon the process of learning mathematics, which were both foundational to the development of their subject matter knowledge and their pedagogical content knowledge.

Date Created
2015-01-02
Agent