Investigating the Role of Relative Size Reasoning in Students’ Understanding of Precalculus Ideas

189257-Thumbnail Image.png
Description
The ideas of measurement and measurement comparisons (e.g., fractions, ratios, quotients) are introduced to students in elementary school. However, studies report that students of all ages have difficulty comparing two quantities in terms of their relative size. Students often understand

The ideas of measurement and measurement comparisons (e.g., fractions, ratios, quotients) are introduced to students in elementary school. However, studies report that students of all ages have difficulty comparing two quantities in terms of their relative size. Students often understand fractions such as 3/7 as part-whole relationships or “three out of seven.” These limited conceptions have been documented to have implications for understanding the quotient as a measure of relative size and when learning other foundational ideas in mathematics (e.g., rate of change). Many scholars have identified students’ ability to conceptualize the relative size of two quantities values as important for learning specific ideas such as constant rate of change, exponential growth, and derivative. However, few researchers have focused on students’ ways of thinking about multiplicatively comparing two quantities’ values as they vary together across select topics in precalculus. Relative size reasoning is a way of thinking one has developed when conceptualizing the comparison of two quantities’ values multiplicatively, as their values vary in tandem. This document reviews literature related to relative size reasoning and presents a conceptual analysis that leverages this research in describing what I mean by a relative size comparison and what it means to engage in relative size reasoning. I further illustrate the role of relative size reasoning in understanding rate of change, multiplicative growth, rational functions, and what a graph’s concavity conveys about how two quantities’ values vary together. This study reports on three beginning calculus students’ ways of thinking as they completed tasks designed to elicit students’ relative size reasoning. The data revealed 4 ways of conceptualizing the idea of quotient and highlights the affordances of conceptualizing a quotient as a measure of the relative size of two quantities’ values. The study also reports data from investigating the validity of a collection of multiple-choice items designed to assess students’ relative size reasoning (RSR) abilities. Analysis of this data provided insights for refining the questions and answer choices for these assessment items.
Date Created
2023
Agent

An Investigation into the Relationships Among Teachers’ Mathematical Meanings for Teaching, Commitment to Quantitative Reasoning, and Decentering Actions

187684-Thumbnail Image.png
Description
Over the past thirty years, research on teachers’ mathematical knowledge for teaching (MKT) has developed and grown in popularity as an area of focus for improving mathematics teaching and students’ learning. Many scholars have investigated types of knowledge teachers use

Over the past thirty years, research on teachers’ mathematical knowledge for teaching (MKT) has developed and grown in popularity as an area of focus for improving mathematics teaching and students’ learning. Many scholars have investigated types of knowledge teachers use when teaching and the relationship between teacher knowledge and student performance. However, few researchers have studied the sources of teachers’ pedagogical decisions and actions and some studies have reported that advances in teachers’ mathematical meanings does not necessarily lead to a teacher conveying strong meanings to students. It has also been reported that a teacher’s ways of thinking about teaching an idea and actions to decenter can influence the teacher’s interactions with students.This document presents three papers detailing a multiple-case study that constitutes my dissertation. The first paper reviews the constructs researchers have used to investigate teachers’ knowledge base. This paper also provides a characterization of the first case’s mathematical meaning for teaching angle measure and the impact of her meaning on her interactions with students while teaching her angle measure lessons. The second paper examines another instructor’s meaning for an angle and its measure and illustrates the symbiotic relationship between the teacher’s mathematical meanings for teaching and decentering actions. This paper also characterizes how an instructor’s commitment to quantitative reasoning influences the teacher’s instructional orientation and instructional actions. Finally, the third paper includes a cross-case analysis of the two instructors’ mathematical meanings for teaching sine function and their enacted teaching practices, including their choice of tasks, interactions with students, and explanations while teaching their sine function lessons.
Date Created
2023
Agent