Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some…
Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e., Black Swan events). Infrastructure managers currently seek pathways through this complexity. To this end, reimagined – multifaceted – definitions of resilience must inform future decisions. Moreover, the hazardous environment of the Anthropocene demands flexibility and dynamic reprioritization of infrastructure and resources during disturbances. In this dissertation, the introduction will briefly explain foundational concepts, frameworks, and models that will inform the rest of this work. Chapter 2 investigates the concept of dynamic criticality: the skill to reprioritize amidst disturbances, repeating this process with each new disturbance. There is a dearth of insight requisite skillsets for infrastructure organizations to attain dynamic criticality. Therefore, this dissertation searches other industries and finds goals, structures, sensemaking, and strategic best practices to propose a contextualized framework for infrastructure. Chapters 3 and 4 seek insight into modeling infrastructure interdependencies and cascading failure to elucidate extreme outcomes such as Black Swans. Chapter 3 explores this concept through a theoretical analysis considering the use of realistic but fictional (i.e., synthetic) models to simulate interdependent behavior and cascading failures. This chapter also discusses potential uses of synthetic networks for infrastructure resilience research and barriers to future success. Chapter 4 tests the preceding theoretical analysis with an empirical study. Chapter 4 builds realistic networks with dependency between power and water models and simulates cascading failure. The discussion considers the future application of similar modeling efforts and how these techniques can help infrastructure managers scan the horizon for Black Swans. Finally, Chapter 5 concludes the dissertation with a synthesis of the findings from the previous chapters, discusses the boundaries and limitations, and proposes inspirations for future work.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Urbanization continues to be a transformative process globally, affecting ecosystem integrity and the health and well being of people around the world. Although cities tend to be centers for both the production and consumption of goods and services that degrade…
Urbanization continues to be a transformative process globally, affecting ecosystem integrity and the health and well being of people around the world. Although cities tend to be centers for both the production and consumption of goods and services that degrade natural environments, there is also evidence that urban ecosystems can play a positive role in sustainability efforts. Despite the fact that most of the urbanization is now occurring in the developing countries of the Global South, much of what we know about urban ecosystems has been developed from studying cities in the United States and across Europe. We propose a conceptual framework to broaden the development of urban ecological research and its application to sustainability. Our framework describes four key contemporary urban features that should be accounted for in any attempt to build a unified theory of cities that contributes to urban sustainability efforts. We evaluated a range of examples from cities around the world, highlighting how urban areas are complex, connected, diffuse and diverse and what these interconnected features mean for the study of urban ecosystems and sustainability.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)