Trees Grow on Money: Urban Tree Canopy Cover and Environmental Justice

128750-Thumbnail Image.png
Description

This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data.

This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data. Data are analyzed at the Census Block Group levels using Spearman’s correlation, ordinary least squares regression (OLS), and a spatial autoregressive model (SAR). Across all cities there is a strong positive correlation between UTC cover and median household income. Negative correlations between race and UTC cover exist in bivariate models for some cities, but they are generally not observed using multivariate regressions that include additional variables on income, education, and housing age. SAR models result in higher r-square values compared to the OLS models across all cities, suggesting that spatial autocorrelation is an important feature of our data. Similarities among cities can be found based on shared characteristics of climate, race/ethnicity, and size. Our findings suggest that a suite of variables, including income, contribute to the distribution of UTC cover. These findings can help target simultaneous strategies for UTC goals and environmental justice concerns.

Date Created
2015-04-01
Agent

The New Global Urban Realm: Complex, Connected, Diffuse, and Diverse Social-Ecological Systems

129207-Thumbnail Image.png
Description

Urbanization continues to be a transformative process globally, affecting ecosystem integrity and the health and well being of people around the world. Although cities tend to be centers for both the production and consumption of goods and services that degrade

Urbanization continues to be a transformative process globally, affecting ecosystem integrity and the health and well being of people around the world. Although cities tend to be centers for both the production and consumption of goods and services that degrade natural environments, there is also evidence that urban ecosystems can play a positive role in sustainability efforts. Despite the fact that most of the urbanization is now occurring in the developing countries of the Global South, much of what we know about urban ecosystems has been developed from studying cities in the United States and across Europe. We propose a conceptual framework to broaden the development of urban ecological research and its application to sustainability. Our framework describes four key contemporary urban features that should be accounted for in any attempt to build a unified theory of cities that contributes to urban sustainability efforts. We evaluated a range of examples from cities around the world, highlighting how urban areas are complex, connected, diffuse and diverse and what these interconnected features mean for the study of urban ecosystems and sustainability.

Date Created
2015-05-01
Agent