Keeping in School Shape: An Analysis of Leveling Up in a Calculus Review Program over Academic Breaks

Description
One common problem that occurs to students during breaks is the retrogression of knowledge due to lack of practice. This problem occurs for students at all levels of education but is especially harmful to students who are taking sequential classes

One common problem that occurs to students during breaks is the retrogression of knowledge due to lack of practice. This problem occurs for students at all levels of education but is especially harmful to students who are taking sequential classes such as Calculus for Engineers I and Calculus for Engineers II where the retention of topics taught in Calculus for Engineers I are required for students to succeed. One solution to this problem is the Keep in School Shape (KiSS) program. The KiSS program is a very efficient and easily accessible program that allows students to stay warmed up and ready to go when they start a sequential course by having daily review material during academic breaks. During an academic break, students who are signed up for the KiSS program are sent a link through text message or email every day that allows them to access a multiple choice review problem. The review problem that they are given is a problem that presents material from the previous course that will be needed in the upcoming course. At the beginning of the review, students have the option to choose between a Level 1 or a Level 2 problem, where a Level 2 problem is related to its Level 1 counterpart but slightly more difficult. Before the students are permitted to solve the problem, they must first use a five point scale that indicates their confidence in their ability to solve the problem. After they complete either the Level 1 or Level 2 daily problem, those that got it wrong have the option to view a hint and try again or view a solution. The students that got the Level 1 daily problem right are also allowed to view the solution but will be permitted to go onto the next level right away whereas the students that got the Level 1 problem incorrect will need to try a similar problem before being able to move onto Level 2. For students who chose to do the Level 2 problem and were not very confident, they were given the option to solve a level 1 problem instead. Students who chose level 2 and got it wrong are given the options to view a hint and try again or simply view the solution before moving on to flashcard versions of the daily problems. Students who get the Level 2 problem correct are also given the option to continue practicing using the flashcards if they choose to. Once a week, there is also a trivia day where students have the choice to complete solely a mathematical trivia question or complete both the trivia question along with a daily review problem. This feature allows students to take a day off from doing mathematics if they choose, but still stay engaged by doing a related activity. Through this program, there is a lot to learn about whether doing Level 1 problems can help students improve their understanding of a concept enough to correctly solve a Level 2 problem. There are many factors to consider such as which question the student chose to answer first, student confidence, and student perseverance. Through the Summer Break 2023 KiSS program, there was data collected for every student answer for each day they accessed the daily KiSS activity. This thesis presents an analysis of the data showing how having two levels of problems is beneficial for students and the correlation between students’ results in Level 1 problems and Level 2 problems for students who chose to attempt both problems.
Date Created
2023-12
Agent

Simulating Cooperative Behaviors in a Subsistence Population: An Agent-Based Modeling Approach

187738-Thumbnail Image.png
Description
Humans cooperate at levels unseen in other species. Identifying the adaptive mechanisms driving this unusual behavior, as well as how these mechanisms interact to create complex cooperative patterns, remains an open question in anthropology. One impediment to such investigations is

Humans cooperate at levels unseen in other species. Identifying the adaptive mechanisms driving this unusual behavior, as well as how these mechanisms interact to create complex cooperative patterns, remains an open question in anthropology. One impediment to such investigations is that complete, long-term datasets of human cooperative behaviors in small-scale societies are hard to come by; such field research is often hindered both by humans' long lifespans and by the difficulties of collecting data in remote societies. In this study, I attempted to overcome these methodological challenges by simulating individual human cooperative behaviors in a small-scale population. Using an agent-based model tuned to population-level measurements from a real-life marine subsistence population in the southern Philippines, I generated dynamic daily cooperative behaviors in a hypothetical subsistence population over a period of 1500 years and 42 overlapping generations. Preliminary findings from the model suggest that, while the agent-based model broadly captured a number of characteristic population-level patterns in the subsistence population, it did not fully replicate nuances of the population's observed cooperative behaviors. In particular, statistical models of the simulated data identified reciprocity-based and need-based cooperative behaviors but did not detect kinship-motivated cooperation, despite the fact that kin cooperation traits evolved positively and reciprocity cooperation traits evolved negatively over time in the agent population. It is possible that this discrepancy reflects a complex interaction between kinship and reciprocity in the agent-based model. On the other hand, it may also suggest that these types of statistical models, which are frequently utilized in human cooperation studies in the anthropological literature, do not reliably discriminate between kin-based and reciprocity-based cooperation mechanisms when both exist in a population. Even so, the completeness of the simulated data enabled use of more complex statistical methodologies which were able to disentangle the relative effects of cooperative mechanisms operating at different decision levels. By addressing remaining pattern-matching issues, future iterations of the agent-based model may prove to be a useful tool for validating empirical research and investigating novel hypotheses about the evolution and maintenance of cooperative behaviors in human populations.
Date Created
2023
Agent

Estimation for Disease Models Across Scales

171927-Thumbnail Image.png
Description
Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country

Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country measles case reports, even such countries with robust registration systems. Eilertson et al. (2019) propose using a state-space model combined with maximum likelihood methods for estimating measles transmission. A Bayesian approach that uses particle Markov Chain Monte Carlo (pMCMC) is proposed to estimate the parameters of the non-linear state-space model developed in Eilertson et al. (2019) and similar previous studies. This dissertation illustrates the performance of this approach by calculating posterior estimates of the model parameters and predictions of the unobserved states in simulations and case studies. Also, Iteration Filtering (IF2) is used as a support method to verify the Bayesian estimation and to inform the selection of prior distributions. In the second half of the thesis, a birth-death process is proposed to model the unobserved population size of a disease vector. This model studies the effect of a disease vector population size on a second affected population. The second population follows a non-homogenous Poisson process when conditioned on the vector process with a transition rate given by a scaled version of the vector population. The observation model also measures a potential threshold event when the host species population size surpasses a certain level yielding a higher transmission rate. A maximum likelihood procedure is developed for this model, which combines particle filtering with the Minorize-Maximization (MM) algorithm and extends the work of Crawford et al. (2014).
Date Created
2022
Agent

Optimal Designs under Logistic Mixed Models

171508-Thumbnail Image.png
Description
Longitudinal data involving multiple subjects is quite popular in medical and social science areas. I consider generalized linear mixed models (GLMMs) applied to such longitudinal data, and the optimal design searching problem under such models. In this case, based on

Longitudinal data involving multiple subjects is quite popular in medical and social science areas. I consider generalized linear mixed models (GLMMs) applied to such longitudinal data, and the optimal design searching problem under such models. In this case, based on optimal design theory, the optimality criteria depend on the estimated parameters, which leads to local optimality. Moreover, the information matrix under a GLMM doesn't have a closed-form expression. My dissertation includes three topics related to this design problem. The first part is searching for locally optimal designs under GLMMs with longitudinal data. I apply penalized quasi-likelihood (PQL) method to approximate the information matrix and compare several approximations to show the superiority of PQL over other approximations. Under different local parameters and design restrictions, locally D- and A- optimal designs are constructed based on the approximation. An interesting finding is that locally optimal designs sometimes apply different designs to different subjects. Finally, the robustness of these locally optimal designs is discussed. In the second part, an unknown observational covariate is added to the previous model. With an unknown observational variable in the experiment, expected optimality criteria are considered. Under different assumptions of the unknown variable and parameter settings, locally optimal designs are constructed and discussed. In the last part, Bayesian optimal designs are considered under logistic mixed models. Considering different priors of the local parameters, Bayesian optimal designs are generated. Bayesian design under such a model is usually expensive in time. The running time in this dissertation is optimized to an acceptable amount with accurate results. I also discuss the robustness of these Bayesian optimal designs, which is the motivation of applying such an approach.
Date Created
2022
Agent

Advances in Directional Goodness-of-fit Testing of Binary Data under Model Misspecification in Case of Sparseness

171467-Thumbnail Image.png
Description
Goodness-of-fit test is a hypothesis test used to test whether a given model fit the data well. It is extremely difficult to find a universal goodness-of-fit test that can test all types of statistical models. Moreover, traditional Pearson’s chi-square goodness-of-fit

Goodness-of-fit test is a hypothesis test used to test whether a given model fit the data well. It is extremely difficult to find a universal goodness-of-fit test that can test all types of statistical models. Moreover, traditional Pearson’s chi-square goodness-of-fit test is sometimes considered to be an omnibus test but not a directional test so it is hard to find the source of poor fit when the null hypothesis is rejected and it will lose its validity and effectiveness in some of the special conditions. Sparseness is such an abnormal condition. One effective way to overcome the adverse effects of sparseness is to use limited-information statistics. In this dissertation, two topics about constructing and using limited-information statistics to overcome sparseness for binary data will be included. In the first topic, the theoretical framework of pairwise concordance and the transformation matrix which is used to extract the corresponding marginals and their generalizations are provided. Then a series of new chi-square test statistics and corresponding orthogonal components are proposed, which are used to detect the model misspecification for longitudinal binary data. One of the important conclusions is, the test statistic $X^2_{2c}$ can be taken as an extension of $X^2_{[2]}$, the second-order marginals of traditional Pearson’s chi-square statistic. In the second topic, the research interest is to investigate the effect caused by different intercept patterns when using Lagrange multiplier (LM) test to find the source of misfit for two items in 2-PL IRT model. Several other directional chi-square test statistics are taken into comparison. The simulation results showed that the intercept pattern does affect the performance of goodness-of-fit test, especially the power to find the source of misfit if the source of misfit does exist. More specifically, the power is directly affected by the `intercept distance' between two misfit variables. Another discovery is, the LM test statistic has the best balance between the accurate Type I error rates and high empirical power, which indicates the LM test is a robust test.
Date Created
2022
Agent

Statistical Inference of Dynamics in Neurons via Stochastic EM

161250-Thumbnail Image.png
Description
Inside cells, axonal and dendritic transport by motor proteins is a process that is responsible for supplying cargo, such as vesicles and organelles, to support neuronal function. Motor proteins achieve transport through a cycle of chemical and mechanical processes. Particle

Inside cells, axonal and dendritic transport by motor proteins is a process that is responsible for supplying cargo, such as vesicles and organelles, to support neuronal function. Motor proteins achieve transport through a cycle of chemical and mechanical processes. Particle tracking experiments are used to study this intracellular cargo transport by recording multi-dimensional, discrete cargo position trajectories over time. However, due to experimental limitations, much of the mechanochemical process cannot be directly observed, making mathematical modeling and statistical inference an essential tool for identifying the underlying mechanisms. The cargo movement during transport is modeled using a switching stochastic differential equation framework that involves classification into one of three proposed hidden regimes. Each regime is characterized by different levels of velocity and stochasticity. The equations are presented as a state-space model with Markovian properties. Through a stochastic expectation-maximization algorithm, statistical inference can be made based on the observed trajectory. Regime predictions and particle location predictions are calculated through an auxiliary particle filter and particle smoother. Based on these predictions, parameters are estimated through maximum likelihood. Diagnostics are proposed that can assess model performance and therefore also be a form of model selection criteria. Model selection is used to find the most accurate regime models and the optimal number of regimes for a certain motor-cargo system. A method for incorporating a second positional dimension is also introduced. These methods are tested on both simulated data and different types of experimental data.
Date Created
2021
Agent

Assessing the Economic Prosperity of Persons with Disabilities in American Cities

134418-Thumbnail Image.png
Description
We seek a comprehensive measurement for the economic prosperity of persons with disabilities. We survey the current literature and identify the major economic indicators used to describe the socioeconomic standing of persons with disabilities. We then develop a methodology for

We seek a comprehensive measurement for the economic prosperity of persons with disabilities. We survey the current literature and identify the major economic indicators used to describe the socioeconomic standing of persons with disabilities. We then develop a methodology for constructing a statistically valid composite index of these indicators, and build this index using data from the 2014 American Community Survey. Finally, we provide context for further use and development of the index and describe an example application of the index in practice.
Date Created
2017-05
Agent

Healthcare Transparency: An Analysis of State-Level Transparency Regulations' Cost Effects in American Hospitals

136139-Thumbnail Image.png
Description
Objective: To assess and quantify the effect of state’s price transparency regulations (hereafter, PTR) on healthcare pricing.

Data Sources: I use the Healthcare Cost and Utilization Project’s Nationwide Inpatient Sample (NIS) from 2000 to 2011. The NIS is

Objective: To assess and quantify the effect of state’s price transparency regulations (hereafter, PTR) on healthcare pricing.

Data Sources: I use the Healthcare Cost and Utilization Project’s Nationwide Inpatient Sample (NIS) from 2000 to 2011. The NIS is a 20% sample of all inpatient claims. The Manhattan Institute supplied data on the availability of health savings accounts in each state. State PTR implementation dates were gathered by Hans Christensen, Eric Floyd, and Mark Maffett of University of Chicago’s Booth School of Business by contacting the health department, hospital association, or website controller in each state.

Study Design: The NIS data was collapsed by procedure, hospital, and year providing averages for the dependent variable, Cost, and a host of covariates. Cost is a product of Total Charges within the NIS and the hospital’s Cost to Charge ratio. A new binary variable, PTR, was defined as ‘0’ if the year was strictly less than the disclosure website’s implementation date, ‘1’ for afterwards, and missing for the year of implementation. Then, using multivariate OLS regression with fixed effect modeling, the change in cost from before to after the year of implementation is estimated.

Principal Findings: The analysis estimates the effect of PTR to decrease the average cost per procedure by 7%. Specifications identify within state, within hospital, and within procedure variation, and reports that 78% of the cost decrease is due to within-hospital, within-procedure price discounts. An additional model includes the interaction of PTR with the prevalence of health savings accounts (hereafter, HSAs) and procedure electivity. The results show that PTR lowers costs by an additional 3 percent with each additional 10 percentage point increase in the availability of HSAs. In contrast, the cost reductions from PTR were much smaller for procedures more frequently coded as elective.

Conclusions: The study concludes price transparency regulations can lead to a decrease in a procedure’s costs on average, primarily through price discounts and slightly through lower cost procedures, but not due to patients moving to cheaper hospitals. This implies that hospitals are taking initiative and lowering prices as the competition’s prices become publically available suggesting that hospitals – not patients – are the biggest users of price transparency websites. Hospitals are also finding some ways to provide cheaper alternatives to more expensive procedures. State regulators should evaluate if a better metric other than charge prices, such as expected out-of-pocket payments, would evoke greater patient participation. Furthermore, states with higher prevalence of HSAs experience greater effects of PTR as expected since patients with HSAs have greater incentives to lower their costs. Patients should expect a shift towards plans that offer these types of savings accounts since they’ve shown to have a reduction of health costs on average per procedure in states with higher prevalence of HSAs.
Date Created
2015-05
Agent

Marketing in the Third Wave of Democratization

136078-Thumbnail Image.png
Description
During the Third Wave of Democratization, the United States has influenced many different cultures through politics and social interests. The way in which this has occurred is through their marketing and advertising. Many companies are the reason that the United States is a super power today.
Date Created
2015-05
Agent

AKT Pathway Genes Define 5 Prognostic Subgroups in Glioblastoma

128939-Thumbnail Image.png
Description

Activity of GFR/PI3K/AKT pathway inhibitors in glioblastoma clinical trials has not been robust. We hypothesized variations in the pathway between tumors contribute to poor response. We clustered GBM based on AKT pathway genes and discovered new subtypes then characterized their

Activity of GFR/PI3K/AKT pathway inhibitors in glioblastoma clinical trials has not been robust. We hypothesized variations in the pathway between tumors contribute to poor response. We clustered GBM based on AKT pathway genes and discovered new subtypes then characterized their clinical and molecular features. There are at least 5 GBM AKT subtypes having distinct DNA copy number alterations, enrichment in oncogenes and tumor suppressor genes and patterns of expression for PI3K/AKT/mTOR signaling components. Gene Ontology terms indicate a different cell of origin or dominant phenotype for each subgroup. Evidence suggests one subtype is very sensitive to BCNU or CCNU (median survival 5.8 vs. 1.5 years; BCNU/CCNU vs other treatments; respectively). AKT subtyping advances previous approaches by revealing additional subgroups with unique clinical and molecular features. Evidence indicates it is a predictive marker for response to BCNU or CCNU and PI3K/AKT/mTOR pathway inhibitors. We anticipate Akt subtyping may help stratify patients for clinical trials and augment discovery of class-specific therapeutic targets.

Date Created
2014-07-01
Agent