Fixational Eye Movement Correction of Blink-Induced Gaze Position Errors

128878-Thumbnail Image.png
Description

Our eyes move continuously. Even when we attempt to fix our gaze, we produce “fixational” eye movements including microsaccades, drift and tremor. The potential role of microsaccades versus drifts in the control of eye position has been debated for decades

Our eyes move continuously. Even when we attempt to fix our gaze, we produce “fixational” eye movements including microsaccades, drift and tremor. The potential role of microsaccades versus drifts in the control of eye position has been debated for decades and remains in question today. Here we set out to determine the corrective functions of microsaccades and drifts on gaze-position errors due to blinks in non-human primates (Macaca mulatta) and humans. Our results show that blinks contribute to the instability of gaze during fixation, and that microsaccades, but not drifts, correct fixation errors introduced by blinks. These findings provide new insights about eye position control during fixation, and indicate a more general role of microsaccades in fixation correction than thought previously.

Date Created
2014-10-21
Agent

The significance of microsaccades for perception and oculomotor control

153054-Thumbnail Image.png
Description
During attempted fixation, the eyes are not still but continue to produce so called "fixational eye movements", which include microsaccades, drift, and tremor. Microsaccades are thought to help prevent and restore vision loss during fixation, and to correct fixation errors,

During attempted fixation, the eyes are not still but continue to produce so called "fixational eye movements", which include microsaccades, drift, and tremor. Microsaccades are thought to help prevent and restore vision loss during fixation, and to correct fixation errors, but how they contribute to these functions remains a matter of debate. This dissertation presents the results of four experiments conducted to address current controversies concerning the role of microsaccades in visibility and oculomotor control.

The first two experiments set out to correlate microsaccade production with the visibility of foveal and peripheral targets of varied spatial frequencies, during attempted fixation. The results indicate that microsaccades restore the visibility of both peripheral targets and targets presented entirely within the fovea, as a function of their spatial frequency characteristics.

The last two experiments set out to determine the role of microsaccades and drifts on the correction of gaze-position errors due to blinks in human and non-human primates, and to characterize microsaccades forming square-wave jerks (SWJs) in non-human primates. The results showed that microsaccades, but not drifts, correct gaze-position errors due to blinks, and that SWJ production and dynamic properties are equivalent in human and non-human primates.

These combined findings suggest that microsaccades, like saccades, serve multiple and non-exclusive functional roles in vision and oculomotor control, as opposed to having a single specialized function.
Date Created
2014
Agent

Motion supports object recognition: insight into possible interactions between the two primary pathways of the human visual system

150444-Thumbnail Image.png
Description
The present study explores the role of motion in the perception of form from dynamic occlusion, employing color to help isolate the contributions of both visual pathways. Although the cells that respond to color cues in the environment usually feed

The present study explores the role of motion in the perception of form from dynamic occlusion, employing color to help isolate the contributions of both visual pathways. Although the cells that respond to color cues in the environment usually feed into the ventral stream, humans can perceive motion based on chromatic cues. The current study was designed to use grey, green, and red stimuli to successively limit the amount of information available to the dorsal stream pathway, while providing roughly equal information to the ventral system. Twenty-one participants identified shapes that were presented in grey, green, and red and were defined by dynamic occlusion. The shapes were then presented again in a static condition where the maximum occlusions were presented as before, but without motion. Results showed an interaction between the motion and static conditions in that when the speed of presentation increased, performance in the motion conditions became significantly less accurate than in the static conditions. The grey and green motion conditions crossed static performance at the same point, whereas the red motion condition crossed at a much slower speed. These data are consistent with a model of neural processing in which the main visual systems share information. Moreover, they support the notion that presenting stimuli in specific colors may help isolate perceptual pathways for scientific investigation. Given the potential for chromatic cues to target specific visual systems in the performance of dynamic object recognition, exploring these perceptual parameters may help our understanding of human visual processing.
Date Created
2011
Agent