The significance of microsaccades for perception and oculomotor control
Description
During attempted fixation, the eyes are not still but continue to produce so called "fixational eye movements", which include microsaccades, drift, and tremor. Microsaccades are thought to help prevent and restore vision loss during fixation, and to correct fixation errors, but how they contribute to these functions remains a matter of debate. This dissertation presents the results of four experiments conducted to address current controversies concerning the role of microsaccades in visibility and oculomotor control.
The first two experiments set out to correlate microsaccade production with the visibility of foveal and peripheral targets of varied spatial frequencies, during attempted fixation. The results indicate that microsaccades restore the visibility of both peripheral targets and targets presented entirely within the fovea, as a function of their spatial frequency characteristics.
The last two experiments set out to determine the role of microsaccades and drifts on the correction of gaze-position errors due to blinks in human and non-human primates, and to characterize microsaccades forming square-wave jerks (SWJs) in non-human primates. The results showed that microsaccades, but not drifts, correct gaze-position errors due to blinks, and that SWJ production and dynamic properties are equivalent in human and non-human primates.
These combined findings suggest that microsaccades, like saccades, serve multiple and non-exclusive functional roles in vision and oculomotor control, as opposed to having a single specialized function.
The first two experiments set out to correlate microsaccade production with the visibility of foveal and peripheral targets of varied spatial frequencies, during attempted fixation. The results indicate that microsaccades restore the visibility of both peripheral targets and targets presented entirely within the fovea, as a function of their spatial frequency characteristics.
The last two experiments set out to determine the role of microsaccades and drifts on the correction of gaze-position errors due to blinks in human and non-human primates, and to characterize microsaccades forming square-wave jerks (SWJs) in non-human primates. The results showed that microsaccades, but not drifts, correct gaze-position errors due to blinks, and that SWJ production and dynamic properties are equivalent in human and non-human primates.
These combined findings suggest that microsaccades, like saccades, serve multiple and non-exclusive functional roles in vision and oculomotor control, as opposed to having a single specialized function.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014
Agent
- Author (aut): Costela, Francisco M
- Committee member: Crook, Sharon M
- Committee member: Martinez-Conde, Susana
- Committee member: Macknik, Stephen L.
- Committee member: Baer, Stephen
- Committee member: McCamy, Michael B
- Publisher (pbl): Arizona State University