Predicting and Controlling Complex Dynamical Systems

158202-Thumbnail Image.png
Description
Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount

Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount of interacting components, tend to possess very high dimensionality. Additionally, due to the intrinsic nonlinear dynamics, they have tremendous rich system behavior, such as bifurcation, synchronization, chaos, solitons. To develop methods to predict and control those systems has always been a challenge and an active research area.

My research mainly concentrates on predicting and controlling tipping points (saddle-node bifurcation) in complex ecological systems, comparing linear and nonlinear control methods in complex dynamical systems. Moreover, I use advanced artificial neural networks to predict chaotic spatiotemporal dynamical systems. Complex networked systems can exhibit a tipping point (a “point of no return”) at which a total collapse occurs. Using complex mutualistic networks in ecology as a prototype class of systems, I carry out a dimension reduction process to arrive at an effective two-dimensional (2D) system with the two dynamical variables corresponding to the average pollinator and plant abundances, respectively. I demonstrate that, using 59 empirical mutualistic networks extracted from real data, our 2D model can accurately predict the occurrence of a tipping point even in the presence of stochastic disturbances. I also develop an ecologically feasible strategy to manage/control the tipping point by maintaining the abundance of a particular pollinator species at a constant level, which essentially removes the hysteresis associated with tipping points.

Besides, I also find that the nodal importance ranking for nonlinear and linear control exhibits opposite trends: for the former, large degree nodes are more important but for the latter, the importance scale is tilted towards the small-degree nodes, suggesting strongly irrelevance of linear controllability to these systems. Focusing on a class of recurrent neural networks - reservoir computing systems that have recently been exploited for model-free prediction of nonlinear dynamical systems, I uncover a surprising phenomenon: the emergence of an interval in the spectral radius of the neural network in which the prediction error is minimized.
Date Created
2020
Agent

Coffee Cup Chaos

132010-Thumbnail Image.png
Description
Complex human controls is a topic of much interest in the fields of robotics, manufacturing, space exploration and many others. Even simple tasks that humans perform with ease can be extremely complicated when observed from a controls and complex systems

Complex human controls is a topic of much interest in the fields of robotics, manufacturing, space exploration and many others. Even simple tasks that humans perform with ease can be extremely complicated when observed from a controls and complex systems perspective. One such simple task is that of a human carrying and moving a coffee cup. Though this may be a mundane task for humans, when this task is modelled and analyzed, the system may be quite chaotic in nature. Understanding such systems is key to the development robots and autonomous systems that can perform these tasks themselves.

The coffee cup system can be simplified and modeled by a cart-and-pendulum system. Bazzi et al. and Maurice et al. present two different cart-and-pendulum systems to represent the coffee cup system [1],[2]. The purpose of this project was to build upon these systems and to gain a better understanding of the coffee cup system and to determine where chaos existed within the system. The honors thesis team first worked with their senior design group to develop a mathematical model for the cart-and-pendulum system based on the Bazzi and Maurice papers [1],[2]. This system was analyzed and then built upon by the honors thesis team to build a cart-and-two-pendulum model to represent the coffee cup system more accurately.

Analysis of the single pendulum model showed that there exists a low frequency region where the pendulum and the cart remain in phase with each other and a high frequency region where the cart and pendulum have a π phase difference between them. The transition point of the low and high frequency region is determined by the resonant frequency of the pendulum. The analysis of the two-pendulum system also confirmed this result and revealed that differences in length between the pendulum cause the pendulums to transition to the high frequency regions at separate frequency. The pendulums have different resonance frequencies and transition into the high frequency region based on their own resonant frequency. This causes a range of frequencies where the pendulums are out of phase from each other. After both pendulums have transitioned, they remain in phase with each other and out of phase from the cart.

However, if the length of the pendulum is decreased too much, the system starts to exhibit chaotic behavior. The short pendulum starts to act in a chaotic manner and the phase relationship between the pendulums and the carts is no longer maintained. Since the pendulum length represents the distance between the particle of coffee and the top of the cup, this implies that coffee near the top of the cup would cause the system to act chaotically. Further analysis would be needed to determine the reason why the length affects the system in this way.
Date Created
2019-12
Agent

Directed Dynamical Influence is More Detectable With Noise

128554-Thumbnail Image.png
Description

Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework

Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence.

Date Created
2016-04-12
Agent