Reward-based sensorimotor decision making

157218-Thumbnail Image.png
Description
Existing theories suggest that evidence is accumulated before making a decision with competing goals. In motor tasks, reward and motor costs have been shown to influence the decision, but the interaction between these two variables has not been studied in

Existing theories suggest that evidence is accumulated before making a decision with competing goals. In motor tasks, reward and motor costs have been shown to influence the decision, but the interaction between these two variables has not been studied in depth. A novel reward-based sensorimotor decision-making task was developed to investigate how reward and motor costs interact to influence decisions. In human subjects, two targets of varying size and reward were presented. After a series of three tones, subjects initiated a movement as one of the targets disappeared. Reward was awarded when participants reached through the remaining target within a specific amount of time. Subjects had to initiate a movement before they knew which target remained. Reward was found to be the only factor that influenced the initial reach. When reward was increased, there was a lower probability of intermediate movements. Both target size and reward lowered reaction times individually and jointly. This interaction can be interpreted as the effect of the expected value, which suggests that reward and target size are not evaluated independently during motor planning. Curvature, or the changing of motor plans, was driven primarily by the target size. After an initial decision was made, the motor costs to switch plans and hit the target had the largest impact on the curvature. An interaction between the reward and target size was also found for curvature, suggesting that the expected value of the target influences the changing of motor plans. Reward, target size, and the interaction between the two were all significant factors for different parts of the decision-making process.
Date Created
2019
Agent

Fall Prevention Using Linear and Nonlinear Analyses and Perturbation Training Intervention

157141-Thumbnail Image.png
Description
Injuries and death associated with fall incidences pose a significant burden to society, both in terms of human suffering and economic losses. The main aim of this dissertation is to study approaches that can reduce the risk of falls. One

Injuries and death associated with fall incidences pose a significant burden to society, both in terms of human suffering and economic losses. The main aim of this dissertation is to study approaches that can reduce the risk of falls. One major subset of falls is falls due to neurodegenerative disorders such as Parkinson’s disease (PD). Freezing of gait (FOG) is a major cause of falls in this population. Therefore, a new FOG detection method using wavelet transform technique employing optimal sampling window size, update time, and sensor placements for identification of FOG events is created and validated in this dissertation. Another approach to reduce the risk of falls in PD patients is to correctly diagnose PD motor subtypes. PD can be further divided into two subtypes based on clinical features: tremor dominant (TD), and postural instability and gait difficulty (PIGD). PIGD subtype can place PD patients at a higher risk for falls compared to TD patients and, they have worse postural control in comparison to TD patients. Accordingly, correctly diagnosing subtypes can help caregivers to initiate early amenable interventions to reduce the risk of falls in PIGD patients. As such, a method using the standing center-of-pressure time series data has been developed to identify PD motor subtypes in this dissertation. Finally, an intervention method to improve dynamic stability was tested and validated. Unexpected perturbation-based training (PBT) is an intervention method which has shown promising results in regard to improving balance and reducing falls. Although PBT has shown promising results, the efficacy of such interventions is not well understood and evaluated. In other words, there is paucity of data revealing the effects of PBT on improving dynamic stability of walking and flexible gait adaptability. Therefore, the effects

of three types of perturbation methods on improving dynamics stability was assessed. Treadmill delivered translational perturbations training improved dynamic stability, and adaptability of locomotor system in resisting perturbations while walking.
Date Created
2019
Agent

The feasibility, development, and accuracy of a re-instrumented force sensing retracting suction neurosurgical tool

132198-Thumbnail Image.png
Description
This thesis investigates the feasibility, development, and accuracy of implementing two inline sets of uniaxial strain gauges for a neurosurgical force sensing suction and retraction (FSSR) instrument to determine force metrics such as magnitude, location, and orientation of applied force

This thesis investigates the feasibility, development, and accuracy of implementing two inline sets of uniaxial strain gauges for a neurosurgical force sensing suction and retraction (FSSR) instrument to determine force metrics such as magnitude, location, and orientation of applied force in real time. Excess force applied during a neurosurgery could lead to complications for the patient during and after surgery, thus there is clinical need for a quantitative real time tool-tissue feedback for various surgical tools. A force-based metric has been observed to be highly correlated to improving not only surgical training but also the outcome of surgical procedures. Past literature and previous studies attempted to design a force sensing retractor. Although previous investigations and prototypes have developed methods and protocols to detect small magnitude forces applied, they lacked the ability to detect the magnitude of force without knowing the distance of the applied force. This is a critical limitation because the location of a net applied force can vary along a retractor during surgery and is often unseen and cannot be measured during surgery. The main goal of this current investigation is to modify the previous design of the force sensing suction retractor (FSSR) device with a new placement of strain gauges, utilizing a novel configuration of an aligned pair of strain gauge arrangement with only knowing the distance between the pair of gauge sets and the strain data collected. The FSSR was a stainless steel suction tube retrofitted with 8 gauges: two sets of 4 gauges aligned and separated radially by 90 degrees within each set. Calibrations test and blind load tests were conducted to determine accuracy of the instrument for detecting the force metrics. It was found that a majority of 40 variations for the calibration tests maintained a percent difference under 10% when comparing actual and calculated values. Specifically, using calibration test 2 for blind test 2 the orientation yielded a calculated value that was 2.1 degrees different. Blind test 2 for the magnitude yielded a calculated value that was .135 N different, which is a 9.104 % difference. Also, blind test 2 set 1 and set 2 for the location of applied load from set 1 and set 2 yielded a calculated value that was 7.334 mm different, which is an 8.95 % difference for set 1 and a 15.63 % difference for set 2. Possible limitations and errors in the protocol that may have increased the discrepancy between actual and calculated values include how accurate the strain gauges were placed in terms of both alignment and radial orientation. Future work in regards to improving the new FSSR prototype, is to first develop a better method to ensure accurate placement of gauges, both in paired alignment between sets and radial separation within sets. Overall, the clinical considerations for a force sensing tool is aimed at minimizing patient injury during surgery, devices such as the force sensing suction retractor is an example of novel technology that could become a standard technology within the operating room.
Date Created
2019-05
Agent

Autonomous MEMS- Based Intracellular Neural Interfaces

156986-Thumbnail Image.png
Description
Intracellular voltage recordings from single neurons in vitro and in vivo have been fundamental to our understanding of neuronal function. Conventional electrodes and associated positioning systems for intracellular recording in vivo are large and bulky, which has largely restricted their

Intracellular voltage recordings from single neurons in vitro and in vivo have been fundamental to our understanding of neuronal function. Conventional electrodes and associated positioning systems for intracellular recording in vivo are large and bulky, which has largely restricted their use to single-channel recording from anesthetized animals. Further, intracellular recordings are very cumbersome, requiring a high degree of skill not readily achieved in a typical laboratory. This dissertation presents a robotic, head-mountable, MEMS (Micro-Electro-Mechanical Systems) based intracellular recording system to overcome the above limitations associated with form-factor, scalability and highly skilled and tedious manual operations required for intracellular recordings. This system combines three distinct technologies: 1) novel microscale, polycrystalline silicon-based electrode for intracellular recording, 2) electrothermal microactuators for precise microscale navigation of the electrode and 3) closed-loop control algorithm for autonomous movement and positioning of electrode inside single neurons. First, two distinct designs of polysilicon-based microscale electrodes were fabricated and tested for intracellular recordings. In the first approach, tips of polysilicon microelectrodes were milled to nanoscale dimensions (<300 nm) using focused ion beam (FIB) to develop polysilicon nanoelectrodes. Polysilicon nanoelectrodes recorded >1.5 mV amplitude, positive-going action potentials and synaptic potentials from neurons in the abdominal ganglion of Aplysia Californica. In the second approach, polysilicon microelectrodes were integrated with miniaturized glass micropipettes filled with electrolyte to fabricate glass-polysilicon microelectrodes. These electrodes consistently recorded high fidelity intracellular potentials from neurons in the abdominal ganglion of Aplysia Californica (Resting Potentials < -35 mV, Action Potentials > 60 mV) as well as the rat motor cortex (Resting Potentials < -50 mV). Next, glass-polysilicon microelectrodes were coupled with microscale electrothermal actuators and controller for autonomous intracellular recordings from single neurons in the abdominal ganglion. Consistent resting potentials (< -35 mV) and action potentials (> 60 mV) were recorded after each successful penetration attempt with the controller and microactuated glass-polysilicon microelectrodes. The success rate of penetration and quality of recordings achieved using electrothermal microactuators were comparable to that of conventional positioning systems. Finally, the feasibility of this miniaturized system to obtain intracellular recordings from single neurons in the motor cortex of rats in vivo is also demonstrated. The MEMS-based system offers significant advantages: 1) reduction in overall size for potential use in behaving animals, 2) scalable approach to potentially realize multi-channel recordings and 3) a viable method to fully automate measurement of intracellular recordings.
Date Created
2018
Agent

Upper limb proprioceptive sensitivity in three-dimensional space: effects of direction, posture, and exogenous neuromodulation

156964-Thumbnail Image.png
Description
Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown

Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane however, few studies have looked at proprioceptive sensitivity in 3d space. In addition, the extent to which proprioceptive sensitivity is modifiable by factors such as exogenous neuromodulation is unclear. To investigate proprioceptive sensitivity in 3d we developed a novel experimental paradigm employing a 7-DoF robot arm, which enables reliable testing of arm proprioception along arbitrary paths in 3d space, including vertical motion which has previously been neglected. A participant’s right arm was coupled to a trough held by the robot that stabilized the wrist and forearm, allowing for changes in configuration only at the elbow and shoulder. Sensitivity to imposed displacements of the endpoint of the arm were evaluated using a “same/different” task, where participant’s hands were moved 1-4 cm from a previously visited reference position. A measure of sensitivity (d’) was compared across 6 movement directions and between 2 postures. For all directions, sensitivity increased monotonically as the distance from the reference location increased. Sensitivity was also shown to be anisotropic (directionally dependent) which has implications for our understanding of the planning and control of reaching movements in 3d space.

The effect of neuromodulation on proprioceptive sensitivity was assessed using transcutaneous electrical nerve stimulation (TENS), which has been shown to have beneficial effects on human cognitive and sensorimotor performance in other contexts. In this pilot study the effects of two frequencies (30hz and 300hz) and three electrode configurations were examined. No effect of electrode configuration was found, however sensitivity with 30hz stimulation was significantly lower than with 300hz stimulation (which was similar to sensitivity without stimulation). Although TENS was shown to modulate proprioceptive sensitivity, additional experiments are required to determine if TENS can produce enhancement rather than depression of sensitivity which would have positive implications for rehabilitation of proprioceptive deficits arising from stroke and other disorders.
Date Created
2018
Agent

Validation of a Flexible Bilayer Micro-Electrocorticography Array and Extraction of High-Frequency Features of Neuronal Activity

156944-Thumbnail Image.png
Description
Neural interfacing applications have advanced in complexity, with needs for increasingly high degrees of freedom in prosthetic device control, sharper discrimination in sensory percepts in bidirectional interfaces, and more precise localization of functional connectivity in the brain. As such, there

Neural interfacing applications have advanced in complexity, with needs for increasingly high degrees of freedom in prosthetic device control, sharper discrimination in sensory percepts in bidirectional interfaces, and more precise localization of functional connectivity in the brain. As such, there is a growing need for reliable neurophysiological recordings at a fine spatial scale matching that of cortical columnar processing. Penetrating microelectrodes provide localization sufficient to isolate action potential (AP) waveforms, but often suffer from recorded signal deterioration linked to foreign body response. Micro-Electrocorticography (μECoG) surface electrodes elicit lower foreign body response and show greater chronic stability of recorded signals, though they typically lack the signal localization necessary to isolate individual APs. This dissertation validates the recording capacity of a novel, flexible, large area μECoG array with bilayer routing in a feline implant, and explores the ability of conventional μECoG arrays to detect features of neuronal activity in a very high frequency band associated with AP waveforms.

Recordings from both layers of the flexible μECoG array showed frequency features typical of cortical local field potentials (LFP) and were shown to be stable in amplitude over time. Recordings from both layers also showed consistent, frequency-dependent modulation after induction of general anesthesia, with large increases in beta and gamma band and decreases in theta band observed over three experiments. Recordings from conventional μECoG arrays over human cortex showed robust modulation in a high frequency (250-2000 Hz) band upon production of spoken words. Modulation in this band was used to predict spoken words with over 90% accuracy. Basal Ganglia neuronal AP firing was also shown to significantly correlate with various cortical μECoG recordings in this frequency band. Results indicate that μECoG surface electrodes may detect high frequency neuronal activity potentially associated with AP firing, a source of information previously unutilized by these devices.
Date Created
2018
Agent

Effects of Transdermal Electrical Nerve Stimulation on Sleep and Mood

156873-Thumbnail Image.png
Description
Sleep is an essential human function. Modern day society has made it so that sleep is prioritized less and less. Professionals in critical positions such as doctors, nurses, and emergency medical technicians can often have hectic schedules that are unforgiving

Sleep is an essential human function. Modern day society has made it so that sleep is prioritized less and less. Professionals in critical positions such as doctors, nurses, and emergency medical technicians can often have hectic schedules that are unforgiving toward sleep due to the increase in shift work that dominates these fields. Sleep deficits can have detrimental effects on one’s psyche and mood. Depression and anxiety both have high comorbidity rates with insomnia because of sleeping deficits. Transdermal Electrical Nerve Stimulation (TENS) offers a potential solution to improving sleep quality and mood by modulating the ascending reticular activating system (RAS). This system starts in the anterior portion of the head with trigeminal nerve branches and is stimulated using a 500-550 Hz waveform.

In this experiment Positive Affect and Negative Affect Schedule (PANAS) scores are recorded daily to monitor mood differences between pre and post treatment (TENS vs Sham). PANAS scores were found to be insignificant between groups. Pittsburgh Sleep Quality Index (PSQI), and Fitbit were chosen to study perceived sleep, and objective sleep. Both PSQI, and Fitbit found insignificant differences between TENS and Sham. Finally, the Beck Depression and Beck Anxiety Inventories were administered weekly to determine if there are immediate changes to depressive and anxiety symptom, after a week of treatment (TENS vs Sham). A significant difference was found between the pre and post of the TENS treatment group. The TENS group was not found to be significantly different from Sham, potentially the result of a placebo effect. These results were found with n=10 participants in the TENS treatment group and n=6 in the sham group.
Date Created
2018
Agent

Non-Penetrating Microelectrode Interfaces for Cortical Neuroprosthetic Applications with a Focus on Sensory Encoding: Feasibility and Chronic Performance in Striate Cortex

156810-Thumbnail Image.png
Description
Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution

Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution interfaces that can survive the environment and be well tolerated by the nervous system under chronic use. The sensory encoding aspect optimally interfaces at a scale sufficient to evoke perception but focal in nature to maximize resolution and evoke more complex and nuanced sensations. Microelectrode arrays can maintain high spatial density, operating on the scale of cortical columns, and can be either penetrating or non-penetrating. The non-penetrating subset sits on the tissue surface without puncturing the parenchyma and is known to engender minimal tissue response and less damage than the penetrating counterpart, improving long term viability in vivo. Provided non-penetrating microelectrodes can consistently evoke perception and maintain a localized region of activation, non-penetrating micro-electrodes may provide an ideal platform for a high performing neural prosthesis; this dissertation explores their functional capacity.

The scale at which non-penetrating electrode arrays can interface with cortex is evaluated in the context of extracting useful information. Articulate movements were decoded from surface microelectrode electrodes, and additional spatial analysis revealed unique signal content despite dense electrode spacing. With a basis for data extraction established, the focus shifts towards the information encoding half of neural interfaces. Finite element modeling was used to compare tissue recruitment under surface stimulation across electrode scales. Results indicated charge density-based metrics provide a reasonable approximation for current levels required to evoke a visual sensation and showed tissue recruitment increases exponentially with electrode diameter. Micro-scale electrodes (0.1 – 0.3 mm diameter) could sufficiently activate layers II/III in a model tuned to striate cortex while maintaining focal radii of activated tissue.

In vivo testing proceeded in a nonhuman primate model. Stimulation consistently evoked visual percepts at safe current thresholds. Tracking perception thresholds across one year reflected stable values within minimal fluctuation. Modulating waveform parameters was found useful in reducing charge requirements to evoke perception. Pulse frequency and phase asymmetry were each used to reduce thresholds, improve charge efficiency, lower charge per phase – charge density metrics associated with tissue damage. No impairments to photic perception were observed during the course of the study, suggesting limited tissue damage from array implantation or electrically induced neurotoxicity. The subject consistently identified stimulation on closely spaced electrodes (2 mm center-to-center) as separate percepts, indicating sub-visual degree discrete resolution may be feasible with this platform. Although continued testing is necessary, preliminary results supports epicortical microelectrode arrays as a stable platform for interfacing with neural tissue and a viable option for bi-directional BCI applications.
Date Created
2018
Agent

Joint control during arm movements performed in reaching activities of daily living

156156-Thumbnail Image.png
Description
The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were

The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were studied during daily functional tasks, which were performed through the rotation of seven DOF in the arm. Analyzed movements which imitated the following 3 activities of daily living: moving an empty soda can from a table and placing it on a further position; placing the empty soda can from initial position at table to a position at shoulder level on a shelf; and placing the empty soda can from initial position at table to a position at eye level on a shelf. Kinematic and kinetic analyses were conducted for these three movements. The studied kinematic characteristics were: hand trajectory in the sagittal plane, displacements of the 7 DOF, and contribution of each DOF to hand velocity. The kinetic analysis involved computation of 3-dimensional vectors of muscle torque (MT), interaction torque (IT), gravity torque (GT), and net torque (NT) at the shoulder, elbow, and wrist. Using the relationship NT = MT + GT + IT, the role of active control and passive factors (gravitation and inter-segmental dynamics) in rotation of each joint by computing MT contribution (MTC) to NT was assessed. MTC was computed using the ratio of the signed MT projection on NT to NT magnitude. Despite a variety of joint movements available across the different tasks, 3 patterns of shoulder and elbow coordination prevailed in each movement: 1) active rotation of the shoulder and predominantly passive rotation of the elbow; 2) active rotation of the elbow and predominantly passive rotation of the shoulder; and 3) passive rotation of both joints. Analysis of wrist control suggested that MT mainly compensates for passive torque and provides adjustment of wrist motion according to requirements of each task. In conclusion, it was observed that the 3 shoulder-elbow coordination patterns (during which at least one joint moved) passively represented joint control primitives, underlying the performance of well-learned arm movements, although these patterns may be less prevalent during non-habitual movements.
Date Created
2018
Agent

Joint control of arm movements during activities of daily living

156147-Thumbnail Image.png
Description
The ultimate goal of human movement control research is to understand how natural movements performed in daily activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Here, patterns of arm joint control during

The ultimate goal of human movement control research is to understand how natural movements performed in daily activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Here, patterns of arm joint control during daily functional tasks were examined, which are performed through rotation of the shoulder, elbow, and wrist with the use of seven DOF: shoulder flexion/extension, abduction/adduction, and internal/external rotation; elbow flexion/extension and pronation/supination; wrist flexion/extension and radial/ulnar deviation. Analyzed movements imitated two activities of daily living: combing the hair and turning the page in a book. Kinematic and kinetic analyses were conducted. The studied kinematic characteristics were displacements of the 7 DOF and contribution of each DOF to hand velocity. The kinetic analysis involved computation of 3-dimensional vectors of muscle torque (MT), interaction torque (IT), gravity torque (GT), and net torque (NT) at the shoulder, elbow, and wrist. Using a relationship NT = MT + GT + IT, the role of active control and the passive factors (gravitation and inter-segmental dynamics) in rotation of each joint was assessed by computing MT contribution (MTC) to NT. MTC was computed using the ratio of the signed MT projection on NT to NT magnitude. Despite the variety of joint movements required across the different tasks, 3 patterns of shoulder and elbow coordination prevailed in each movement: 1) active rotation of the shoulder and predominantly passive rotation of the elbow; 2) active rotation of the elbow and predominantly passive rotation of the shoulder; and 3) passive rotation of both joints. Analysis of wrist control suggested that MT mainly compensates for passive torque and provides adjustment of wrist motion according to requirements of both tasks. The 3 shoulder-elbow coordination patterns during which at least one joint moves largely passively represent joint control primitives underlying performance of well-learned arm movements, although these patterns may be less prevalent during non-habitual movements. The advantage of these control primitives is that they require minimal neural effort for joint coordination, and thus increase neural resources that can be used for cognitive tasks.
Date Created
2018
Agent