Description
A current thrust in neurorehabilitation research involves exogenous neuromodulation of peripheral nerves to enhance neuroplasticity and maximize recovery of function. This dissertation presents the results of four experiments aimed at assessing the effects of trigeminal nerve stimulation (TNS) and occipital nerve stimulation (ONS) on motor learning, which was behaviorally characterized using an upper extremity visuomotor adaptation paradigm. In Aim 1a, the effects of offline TNS using clinically tested frequencies (120 and 60 Hz) were characterized. Sixty-three participants (22.75±4.6 y/o), performed a visuomotor rotation task and received TNS before encountering rotation of hand visual feedback. In Aim 1b, TNS at 3 kHz, which has been shown to be more tolerable at higher current intensities, was evaluated in 42 additional subjects (23.4±4.6 y/o). Results indicated that 3 kHz stimulation accelerated learning while 60 Hz stimulation slowed learning, suggesting a frequency-dependent effect on learning. In Aim 2, the effect of online TNS using 120 and 60 Hz were characterized to determine if this protocol would deliver better outcomes. Sixty-three participants (23.2±3.9 y/o) received either TNS or sham concurrently with perturbed visual feedback. Results showed no significant differences among groups. However, a cross-study comparison of results obtained with 60 Hz offline TNS showed a statistically significant improvement in learning rates with online stimulation relative to offline, suggesting a timing-dependent effect on learning. In Aim 3, TNS and ONS were compared using the best protocol from previous aims (offline 3 kHz). Additionally, concurrent stimulation of both nerves was explored to look for potential synergistic effects. Eighty-four participants (22.9±3.2 y/o) were assigned to one of four groups: TNS, ONS, TNS+ONS, and sham. Visual inspection of learning curves revealed that the ONS group demonstrated the fastest learning among groups. However, statistical analyses did not confirm this observation. In addition, the TNS+ONS group appeared to learn faster than the sham and TNS groups but slower than the ONS only group, suggesting no synergistic effects using this protocol, as initially hypothesized.
The results provide new information on the potential use of TNS and ONS in neurorehabilitation and performance enhancement in the motor domain.
Details
Title
- Effects of Trigeminal Nerve Stimulation on Visuomotor Learning
Contributors
- Arias, Diego (Author)
- Buneo, Christopher (Thesis advisor)
- Schaefer, Sydney (Committee member)
- Helms-Tillery, Stephen (Committee member)
- Santello, Marco (Committee member)
- Kleim, Jeffrey (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2023
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2023
- Field of study: Biomedical Engineering