Advancing the Implementation and Adoption of Urine Diversion Systems in Commercial and Institutional Buildings in the United States: A Focus on Control of Urea Hydrolysis

161280-Thumbnail Image.png
Description
This dissertation focused on the implementation of urine diversion systems in commercial and institutional buildings in the United States with a focus on control of the urea hydrolysis reaction. Urine diversion is the process by which urine is separately collected

This dissertation focused on the implementation of urine diversion systems in commercial and institutional buildings in the United States with a focus on control of the urea hydrolysis reaction. Urine diversion is the process by which urine is separately collected at the source in order to realize system benefits, including water conservation, nutrient recovery, and pharmaceutical removal. Urine diversion systems depend greatly on the functionality of nonwater urinals and urine diverting toilets, which are needed to collect undiluted urine. However, the urea hydrolysis reaction creates conditions that lead to precipitation in the fixtures due to the increase in pH from 6 to 9 as ammonia and bicarbonate are produced. Chapter 2 and Chapter 3 describes the creation and use of a cyber-physical system (CPS) to monitor and control urea hydrolysis in the urinal testbed. Two control logics were used to control urea hydrolysis in realistic restroom conditions. In the experiments, acid was added to inhibit urea hydrolysis during periods of high and low building occupancy. These results were able to show that acid should be added based on the restroom use in order to efficiently inhibit urea hydrolysis. Chapter 4 advanced the results from Chapter 3 by testing the acid addition control logics in a real restroom with the urinal-on-wheels. The results showed that adding acid during periods of high building occupancy equated to the least amount of acid added and allowed for urea hydrolysis inhibition. This study also analyzed the bacterial communities of the collected urine and found that acid addition changed the structure of the bacterial communities. Chapter 5 showed an example of the capabilities of a CPS when implemented in CI buildings. The study used data mining methods to predict chlorine residuals in premise plumbing in a CI green building. The results showed that advance modeling methods were able to model the system better than traditional methods. These results show that CPS technology can be used to illuminate systems and can provide information needed to understand conditions within CI buildings.
Date Created
2021
Agent

Peer to Peer Microlending: A Charitable Donation Management Platform on Blockchain

158596-Thumbnail Image.png
Description
Microlending aims at providing low-barrier loans to small to medium scaled family run businesses that are financially disincluded historically. These borrowers might be in third world countries where traditional financing is not accessible. Lenders can be individual investors or institutions

Microlending aims at providing low-barrier loans to small to medium scaled family run businesses that are financially disincluded historically. These borrowers might be in third world countries where traditional financing is not accessible. Lenders can be individual investors or institutions making risky investments or willing to help people who cannot access traditional banks or do not have the credibility to get loans from traditional sources. Microlending involves a charitable cause as well where lenders are not really concerned about what and how they are paid.

This thesis aims at building a platform that will support both commercial microlending as well as charitable donation to support the real cause of microlending. The platform is expected to ensure privacy and transparency to the users in order to attract more users to use the system. Microlending involves monetary transactions, hence possible security threats to the system are discussed.

Blockchain is one of the technologies which has revolutionized financial transactions and microlending involves monetary transactions. Therefore, blockchain is viable option for microlending platform. Permissioned blockchain restricts the user admission to the platform and provides with identity management feature. This feature is required to ensure the security and privacy of various types of participants on the microlending platform.
Date Created
2020
Agent

Cryptopoly: Using Ethereum State Channels for Decentralized Game Applications

131060-Thumbnail Image.png
Description
All modern multiplayer games are administered by having players connect to a remote server which is used to provide the ground truth for game state and player actions. This use of a central server provides a simple and intuitive way

All modern multiplayer games are administered by having players connect to a remote server which is used to provide the ground truth for game state and player actions. This use of a central server provides a simple and intuitive way to administer game servers but also provides a single point of failure, as each server must be able to process all actions coming in and make a decision on whether the action is allowed or not, and how to update the game state accordingly. In cases where the server is under significant load, either from a very popular game release or from a deliberate attack, the game slows down or completely crashes. When there is a server action backlog, this can allow malicious actors to perform previously impossible actions. By instead using a decentralized platform, we can build a robust system that allows playing games through a P2P manner, filling in the need for central servers with consensus algorithms that provide the security on the part of a central authority. This project aims to show that a decentralized solution can be used to create a transparent, fully playable game of Monopoly with complex features that would be more scalable, reliable, and cost-effective compared to a centralized solution; meaning that games could be produced that costs pennies to publish and modify, taking seconds to propagate changes globally, and most importantly, cost nothing for upkeep. The codebase is available here: https://github.com/SirNeural/monopoly
Date Created
2020-12
Agent

Mengde Signatures: The First Practical Implementation Of Proxy Digital Signatures

Description
Proxy digital signatures are a subset of proxy cryptography that enable a peer, as a proxy delegator, to delegate signing privileges to another trusted peer, who becomes a proxy signer. The proxy signer then signs authorized transactions routed to it

Proxy digital signatures are a subset of proxy cryptography that enable a peer, as a proxy delegator, to delegate signing privileges to another trusted peer, who becomes a proxy signer. The proxy signer then signs authorized transactions routed to it from the proxy delegator, to then send to the intended third party on their behalf. This has great applications for computer networks where certain devices lack sufficient computational power to secure themselves and may rely on trusted and computationally more powerful peers, particularly within edge and fog networks. Although there are multiple proxy digital signature schemas that are circulated within cryptography-centric research papers, a practical software implementation has yet to be created. In this paper we describe Mengde Signatures: the first practical software implementation of proxy digital signatures. We expound upon the current architecture and process for how proxy signatures are implemented and function in a software engineering context. Although applicable to many different types of networks, we showcase the application of Mengde Signatures on an open source Proof-Of-Work Blockchain.
Date Created
2020-12
Agent

MedFabric4Me: Blockchain Based Patient Centric Electronic Health Records System

158361-Thumbnail Image.png
Description
Blockchain technology enables a distributed and decentralized environment without any central authority. Healthcare is one industry in which blockchain is expected to have significant impacts. In recent years, the Healthcare Information Exchange(HIE) has been shown to benefit the healthcare industry

Blockchain technology enables a distributed and decentralized environment without any central authority. Healthcare is one industry in which blockchain is expected to have significant impacts. In recent years, the Healthcare Information Exchange(HIE) has been shown to benefit the healthcare industry remarkably. It has been shown that blockchain could help to improve multiple aspects of the HIE system.

When Blockchain technology meets HIE, there are only a few proposed systems and they all suffer from the following two problems. First, the existing systems are not patient-centric in terms of data governance. Patients do not own their data and have no direct control over it. Second, there is no defined protocol among different systems on how to share sensitive data.

To address the issues mentioned above, this paper proposes MedFabric4Me, a blockchain-based platform for HIE. MedFabric4Me is a patient-centric system where patients own their healthcare data and share on a need-to-know basis. First, analyzed the requirements for a patient-centric system which ensures tamper-proof sharing of data among participants. Based on the analysis, a Merkle root based mechanism is created to ensure that data has not tampered. Second, a distributed Proxy re-encryption system is used for secure encryption of data during storage and sharing of records. Third, combining off-chain storage and on-chain access management for both authenticability and privacy.

MedFabric4Me is a two-pronged solution platform, composed of on-chain and off-chain components. The on-chain solution is implemented on the secure network of Hyperledger Fabric(HLF) while the off-chain solution uses Interplanetary File System(IPFS) to store data securely. Ethereum based Nucypher, a proxy re-encryption network provides cryptographic access controls to actors for encrypted data sharing.

To demonstrate the practicality and scalability, a prototype solution of MedFabric4Me is implemented and evaluated the performance measure of the system against an already implemented HIE.

Results show that decentralization technology like blockchain could help to mitigate some issues that HIE faces today, like transparency for patients, slow emergency response, and better access control.

Finally, this research concluded with the benefits and shortcomings of MedFabric4Me with some directions and work that could benefit MedFabric4Me in terms of operation and performance.
Date Created
2020
Agent

Predicting Bitcoin Price Trend using Sentiment Analysis

Description
In this paper I defend the argument that public reaction to news headlines correlates with the short-term price direction of Bitcoin. I collected a month's worth of Bitcoin data consisting of news headlines, tweets, and the price of the cryptocurrency.

In this paper I defend the argument that public reaction to news headlines correlates with the short-term price direction of Bitcoin. I collected a month's worth of Bitcoin data consisting of news headlines, tweets, and the price of the cryptocurrency. I fed this data into a Long Short-Term Memory Neural Network and built a model that predicted Bitcoin price for a new timeframe. The model correctly predicted 75% of test set price trends on 3.25 hour time intervals. This is higher than the 53.57% accuracy tested with a Bitcoin price model without sentiment data. I concluded public reaction to Bitcoin news headlines has an effect on the short-term price direction of the cryptocurrency. Investors can use my model to help them in their decision-making process when making short-term Bitcoin investment decisions.
Date Created
2020-05
Agent

Leveraging Blockchain for Plasma Fractionation Supply Chains

131600-Thumbnail Image.png
Description
This study aims to examine how the use of consensus-based transactions, smart contracts,and interoperability, provided by blockchain, may benefit the blood plasma industry. Plasmafractionation is the process of separating blood into multiple components to garner benefitsof increased lifespan, specialized allocation,

This study aims to examine how the use of consensus-based transactions, smart contracts,and interoperability, provided by blockchain, may benefit the blood plasma industry. Plasmafractionation is the process of separating blood into multiple components to garner benefitsof increased lifespan, specialized allocation, and decreased waste, thereby creating a morecomplex and flexible supply chain. Traditional applications of blockchain are developed onthe basis of decentralization—an infeasible policy for this sector due to stringent governmentregulations, such as HIPAA. However, the trusted nature of the relations in the plasmaindustry’s taxonomy proves private and centralized blockchains as the viable alternative.Implementations of blockchain are widely seen across pharmaceutical supply chains to combatthe falsification of possibly afflictive drugs. This system is more difficult to manage withblood, due to the quick perishable time, tracking/tracing of recycled components, and thenecessity of real-time metrics. Key attributes of private blockchains, such as digital identity,smart contracts, and authorized ledgers, may have the possibility of providing a significantpositive impact on the allocation and management functions of blood banks. Herein, we willidentify the economy and risks of the plasma ecosystem to extrapolate specific applications forthe use of blockchain technology. To understand tangible effects of blockchain, we developeda proof of concept application, aiming to emulate the business logic of modern plasma supplychain ecosystems adopting a blockchain data structure. The application testing simulates thesupply chain via agent-based modeling to analyze the scalability, benefits, and limitations ofblockchain for the plasma fractionation industry.
Date Created
2020-05
Agent

Enabling Peer to Peer Energy Trading Marketplace Using Consortium Blockchain Networks

157869-Thumbnail Image.png
Description
Blockchain technology enables peer-to-peer transactions through the elimination of the need for a centralized entity governing consensus. Rather than having a centralized database, the data is distributed across multiple computers which enables crash fault tolerance as well as makes the

Blockchain technology enables peer-to-peer transactions through the elimination of the need for a centralized entity governing consensus. Rather than having a centralized database, the data is distributed across multiple computers which enables crash fault tolerance as well as makes the system difficult to tamper with due to a distributed consensus algorithm.

In this research, the potential of blockchain technology to manage energy transactions is examined. The energy production landscape is being reshaped by distributed energy resources (DERs): photo-voltaic panels, electric vehicles, smart appliances, and battery storage. Distributed energy sources such as microgrids, household solar installations, community solar installations, and plug-in hybrid vehicles enable energy consumers to act as providers of energy themselves, hence acting as 'prosumers' of energy.

Blockchain Technology facilitates managing the transactions between involved prosumers using 'Smart Contracts' by tokenizing energy into assets. Better utilization of grid assets lowers costs and also presents the opportunity to buy energy at a reasonable price while staying connected with the utility company. This technology acts as a backbone for 2 models applicable to transactional energy marketplace viz. 'Real-Time Energy Marketplace' and 'Energy Futures'. In the first model, the prosumers are given a choice to bid for a price for energy within a stipulated period of time, while the Utility Company acts as an operating entity. In the second model, the marketplace is more liberal, where the utility company is not involved as an operator. The Utility company facilitates infrastructure and manages accounts for all users, but does not endorse or govern transactions related to energy bidding. These smart contracts are not time bounded and can be suspended by the utility during periods of network instability.
Date Created
2019
Agent

Blockchain: An Assessment of its Potential and Challenges in Addressing Sustainability Issues

126660-Thumbnail Image.png
Description
Blockchain, the technology behind the worldwide-known cryptocurrency Bitcoin, offers a new set of potential advantages and opportunities that various industries and institutions could use to enhance their processes. Although most research and development on blockchain has focused on applications for

Blockchain, the technology behind the worldwide-known cryptocurrency Bitcoin, offers a new set of potential advantages and opportunities that various industries and institutions could use to enhance their processes. Although most research and development on blockchain has focused on applications for cryptocurrencies and the finance industry, relatively few analyses and assessments have been conducted on how it could provide tools to address social and environmental issues. This research, using interviews, literature review and examples of blockchain applications, explores how this technology can be employed to address sustainability issues under the framework of three UN Sustainable Development Goals: 2. Zero Hunger, 7. Affordable and Clean Energy, and 14. Life Below Water. The analysis shows that blockchain has the potential to support solutions to sustainability problems that need efficient traceability, trust, a unique ID, transparency, or a highly secure payment system. However, the technology should not be mistaken for a panacea for addressing sustainability issues in its current state because it is not yet mature and has not been sufficiently tested. Expansion of blockchain as an effective tool for helping solve sustainability challenges will require a greater understanding of the governance of blockchain, its scalability and its potential unintended consequences for the technology to become properly integrated into the decision-making progress.
Date Created
2019-04-17
Agent

Digital Fountain for Multi-node Aggregation of Data in Blockchains

156945-Thumbnail Image.png
Description
Blockchain scalability is one of the issues that concerns its current adopters. The current popular blockchains have initially been designed with imperfections that in- troduce fundamental bottlenecks which limit their ability to have a higher throughput and a lower latency.

One

Blockchain scalability is one of the issues that concerns its current adopters. The current popular blockchains have initially been designed with imperfections that in- troduce fundamental bottlenecks which limit their ability to have a higher throughput and a lower latency.

One of the major bottlenecks for existing blockchain technologies is fast block propagation. A faster block propagation enables a miner to reach a majority of the network within a time constraint and therefore leading to a lower orphan rate and better profitability. In order to attain a throughput that could compete with the current state of the art transaction processing, while also keeping the block intervals same as today, a 24.3 Gigabyte block will be required every 10 minutes with an average transaction size of 500 bytes, which translates to 48600000 transactions every 10 minutes or about 81000 transactions per second.

In order to synchronize such large blocks faster across the network while maintain- ing consensus by keeping the orphan rate below 50%, the thesis proposes to aggregate partial block data from multiple nodes using digital fountain codes. The advantages of using a fountain code is that all connected peers can send part of data in an encoded form. When the receiving peer has enough data, it then decodes the information to reconstruct the block. Along with them sending only part information, the data can be relayed over UDP, instead of TCP, improving upon the speed of propagation in the current blockchains. Fountain codes applied in this research are Raptor codes, which allow construction of infinite decoding symbols. The research, when applied to blockchains, increases success rate of block delivery on decode failures.
Date Created
2018
Agent