MedFabric4Me: Blockchain Based Patient Centric Electronic Health Records System

158361-Thumbnail Image.png
Description
Blockchain technology enables a distributed and decentralized environment without any central authority. Healthcare is one industry in which blockchain is expected to have significant impacts. In recent years, the Healthcare Information Exchange(HIE) has been shown to benefit the healthcare industry

Blockchain technology enables a distributed and decentralized environment without any central authority. Healthcare is one industry in which blockchain is expected to have significant impacts. In recent years, the Healthcare Information Exchange(HIE) has been shown to benefit the healthcare industry remarkably. It has been shown that blockchain could help to improve multiple aspects of the HIE system.

When Blockchain technology meets HIE, there are only a few proposed systems and they all suffer from the following two problems. First, the existing systems are not patient-centric in terms of data governance. Patients do not own their data and have no direct control over it. Second, there is no defined protocol among different systems on how to share sensitive data.

To address the issues mentioned above, this paper proposes MedFabric4Me, a blockchain-based platform for HIE. MedFabric4Me is a patient-centric system where patients own their healthcare data and share on a need-to-know basis. First, analyzed the requirements for a patient-centric system which ensures tamper-proof sharing of data among participants. Based on the analysis, a Merkle root based mechanism is created to ensure that data has not tampered. Second, a distributed Proxy re-encryption system is used for secure encryption of data during storage and sharing of records. Third, combining off-chain storage and on-chain access management for both authenticability and privacy.

MedFabric4Me is a two-pronged solution platform, composed of on-chain and off-chain components. The on-chain solution is implemented on the secure network of Hyperledger Fabric(HLF) while the off-chain solution uses Interplanetary File System(IPFS) to store data securely. Ethereum based Nucypher, a proxy re-encryption network provides cryptographic access controls to actors for encrypted data sharing.

To demonstrate the practicality and scalability, a prototype solution of MedFabric4Me is implemented and evaluated the performance measure of the system against an already implemented HIE.

Results show that decentralization technology like blockchain could help to mitigate some issues that HIE faces today, like transparency for patients, slow emergency response, and better access control.

Finally, this research concluded with the benefits and shortcomings of MedFabric4Me with some directions and work that could benefit MedFabric4Me in terms of operation and performance.
Date Created
2020
Agent

Using Event logs and Rapid Ethnographic Data to Mine Clinical Pathways

158252-Thumbnail Image.png
Description
Background: Process mining (PM) using event log files is gaining popularity in healthcare to investigate clinical pathways. But it has many unique challenges. Clinical Pathways (CPs) are often complex and unstructured which results in spaghetti-like models. Moreover, the log files

Background: Process mining (PM) using event log files is gaining popularity in healthcare to investigate clinical pathways. But it has many unique challenges. Clinical Pathways (CPs) are often complex and unstructured which results in spaghetti-like models. Moreover, the log files collected from the electronic health record (EHR) often contain noisy and incomplete data. Objective: Based on the traditional process mining technique of using event logs generated by an EHR, observational video data from rapid ethnography (RE) were combined to model, interpret, simplify and validate the perioperative (PeriOp) CPs. Method: The data collection and analysis pipeline consisted of the following steps: (1) Obtain RE data, (2) Obtain EHR event logs, (3) Generate CP from RE data, (4) Identify EHR interfaces and functionalities, (5) Analyze EHR functionalities to identify missing events, (6) Clean and preprocess event logs to remove noise, (7) Use PM to compute CP time metrics, (8) Further remove noise by removing outliers, (9) Mine CP from event logs and (10) Compare CPs resulting from RE and PM. Results: Four provider interviews and 1,917,059 event logs and 877 minutes of video ethnography recording EHRs interaction were collected. When mapping event logs to EHR functionalities, the intraoperative (IntraOp) event logs were more complete (45%) when compared with preoperative (35%) and postoperative (21.5%) event logs. After removing the noise (496 outliers) and calculating the duration of the PeriOp CP, the median was 189 minutes and the standard deviation was 291 minutes. Finally, RE data were analyzed to help identify most clinically relevant event logs and simplify spaghetti-like CPs resulting from PM. Conclusion: The study demonstrated the use of RE to help overcome challenges of automatic discovery of CPs. It also demonstrated that RE data could be used to identify relevant clinical tasks and incomplete data, remove noise (outliers), simplify CPs and validate mined CPs.
Date Created
2020
Agent