Novel Applications of Wastewater-based Epidemiology for Assessing Population Nutrition, Infectious Disease, and Chronic Illness

168582-Thumbnail Image.png
Description
Traditional public health strategies for assessing human behavior, exposure, and activity are considered resource-exhaustive, time-consuming, and expensive, warranting a need for alternative methods to enhance data acquisition and subsequent interventions. This dissertation critically evaluated the use of wastewater-based epidemiology (WBE)

Traditional public health strategies for assessing human behavior, exposure, and activity are considered resource-exhaustive, time-consuming, and expensive, warranting a need for alternative methods to enhance data acquisition and subsequent interventions. This dissertation critically evaluated the use of wastewater-based epidemiology (WBE) as an inclusive and non-invasive tool for conducting near real-time population health assessments. A rigorous literature review was performed to gauge the current landscape of WBE to monitor for biomarkers indicative of diet, as well as exposure to estrogen-mimicking endocrine disrupting (EED) chemicals via route of ingestion. Wastewater-derived measurements of phytoestrogens from August 2017 through July 2019 (n = 156 samples) in a small sewer catchment revealed seasonal patterns, with highest average per capita consumption rates in January through March of each year (2018: 7.0 ± 2.0 mg d-1; 2019: 8.2 ± 2.3 mg d-1) and statistically significant differences (p = 0.01) between fall and winter (3.4 ± 1.2 vs. 6.1 ± 2.9 mg d-1; p ≤ 0.01) and spring and summer (5.6 ± 2.1 vs. 3.4 ± 1.5 mg d-1; p ≤ 0.01). Additional investigations, including a human gut microbial composition analysis of community wastewater, were performed to support a methodological framework for future implementation of WBE to assess population-level dietary behavior. In response to the COVID-19 global pandemic, a high-frequency, high-resolution sample collection approach with public data sharing was implemented throughout the City of Tempe, Arizona, and analyzed for SARS-CoV-2 (E gene) from April 2020 through March 2021 (n = 1,556 samples). Results indicate early warning capability during the first wave (June 2020) compared to newly reported clinical cases (8.5 ± 2.1 days), later transitioning to a slight lagging indicator in December/January 2020-21 (-2.0 ± 1.4 days). A viral hotspot from within a larger catchment area was detected, prompting targeted interventions to successfully mitigate community spread; reinforcing the importance of sample collection within the sewer infrastructure. I conclude that by working in tandem with traditional approaches, WBE can enlighten a comprehensive understanding of population health, with methods and strategies implemented in this work recommended for future expansion to produce timely, actionable data in support of public health.
Date Created
2022
Agent