Immunity of International Organizations and Access to Justice: An International Comparative Analysis

Description
International organizations customarily receive immunities from national jurisdictions so that they may execute their specified mandates and functions without undue interference. However, this immunity results in inherent limitations on access to justice for victims of wrongdoing perpetrated by international organizations.

International organizations customarily receive immunities from national jurisdictions so that they may execute their specified mandates and functions without undue interference. However, this immunity results in inherent limitations on access to justice for victims of wrongdoing perpetrated by international organizations. The case of Rodriguez et al. v Pan-American Health Organization (PAHO) in the United States exemplifies such limitations, as the claimants who were allegedly trafficked by the PAHO only received limited justice under the American system of immunities. However, other national jurisdictions provide for exceptions to immunities based on a concern for claimants' human rights and access to justice, with the possibility that cases like Rodriguez et al. v PAHO would have starkly different outcomes for legal recourse available to victims. This possibility is especially promising in jurisdictions with strong human rights regimes, with Europe being a prime example of such a jurisdiction. This paper examines the predicted outcomes for the case model provided by Rodriguez et al. v PAHO under two different European national jurisdictions - Belgium and the Netherlands - and their respective systems of exceptions to international organizations' immunities. The outcomes are analyzed with particular attention paid to their implications for the human rights of the claimants and the insights gained into the legal mechanisms and structures that are most crucial for and most harmful towards the human rights of claimants.
Date Created
2024-05
Agent

Inclusive Urban Flood Resilience in a Developing Economy: Case of Georgetown, Guyana

191031-Thumbnail Image.png
Description
Inequities and exclusions, compounded by the increasing intensity of extreme weather events, pose significant challenges to urban planning for low-elevation coastal zones (LECZ). Inclusive development (ID) and urban flood resilience (UFR) have emerged as widely endorsed solutions by scholars. Granting

Inequities and exclusions, compounded by the increasing intensity of extreme weather events, pose significant challenges to urban planning for low-elevation coastal zones (LECZ). Inclusive development (ID) and urban flood resilience (UFR) have emerged as widely endorsed solutions by scholars. Granting that they gain substantial support and enthusiasm, they have the potential to transform vulnerable urban areas. While their noble intentions are commendable, the intricacies of ID cannot be overlooked, as UFR often inherits and perpetuates the inequalities ingrained in conventional development paradigms. Given the critical importance of ID and UFR in contemporary urban planning, my dissertation research devolved into their fusion by answering my main research question, what constitutes inclusive urban flood resilience? This investigation was carried out through a series of four secondary research questions distributed over three academic papers, each contributing a unique perspective and insights to this burgeoning field. Through a systematic literature review and employing bibliometric and thematic analyses, Chapter 2 offers a comprehensive understanding of inclusive development and a refined definition of the concept. Subsequently, taking Georgetown, the capital city of Guyana, as a case study, Chapter 3 estimates its UFR and employs dimensionality reduction by way of principal component analysis to present these findings in a transparent manner. Chapter 4 builds on the findings of the previous chapters, by first presenting a novel approach to evaluate inclusive development within the framework of the results of Chapter 2, and secondly, together with a systematic meta-analysis of flood resilience measurements, it offers an examination of the ID-UFR nexus. The findings suggest that the concept of inclusive development is nuanced by context-specific definitions, that flood resilience in Georgetown varies among its sub-districts, and that city dimensions (natural, built, social, economic, and institutional), as assessed by pooling global studies, do not share synergistic relationships, being a measure of inclusive development. These findings are critical to urban planning in Georgetown and similar contexts globally as they provide data-driven guidance for understanding these concepts and applying them toward developing inclusive and flood-resilient cities and communities.
Date Created
2023
Agent

The Failures, Successes, and Future of the Modern Biocontainment Paradigm

Description

The debate around genetic engineering has permeated society for decades. A crucial aspect of this debate is the containment of genetically engineered organisms. This project outlines the three types of biocontainment and the conclusions drawn about each in the form

The debate around genetic engineering has permeated society for decades. A crucial aspect of this debate is the containment of genetically engineered organisms. This project outlines the three types of biocontainment and the conclusions drawn about each in the form of policy briefs. These briefs utilize case studies to sketch an overview of the current biocontainment paradigm in the United States. In addition, there is a brief discussing the major conclusions drawn from the case studies, as well as a brief containing useful definitions.

Date Created
2023-05
Agent

Improving Human Rights in Global Fisheries

168824-Thumbnail Image.png
Description
Widespread human rights abuses have been documented in global fisheries, prompting governments, intergovernmental organizations, non-governmental organizations, and businesses to reconsider human rights as a key tenet of seafood sustainability. New and existing approaches are aiming to integrate human and labor

Widespread human rights abuses have been documented in global fisheries, prompting governments, intergovernmental organizations, non-governmental organizations, and businesses to reconsider human rights as a key tenet of seafood sustainability. New and existing approaches are aiming to integrate human and labor rights into sustainability initiatives. These efforts encompass the development of new tools for conducting human rights due diligence and the modification of market-based approaches like third-party certifications, fishery improvement projects, and buyer sourcing commitments to include criteria for social responsibility. It is critical to evaluate these approaches to better understand their efficacy and areas in need of improvement. This dissertation explores how approaches for seafood sustainability are being adapted to protect and respect human rights of fishers and fishworkers. First, I examine the efficacy of a recognized human rights risk assessment tool: the Social Responsibility Assessment Tool for the Seafood Sector (SRA). Through a preliminary assessment of human rights risk in Guyana’s artisanal fishery, I determined that the SRA is an effective approach to identify visible and potential risk, though it must be supplemented with engagement with fishers and fishworkers through interviews. Next, I evaluated labor conditions in the shrimp and groundfish fishery of the Guianas-Brazil Shelf using a novel evaluative framework for decent work. I uncovered cross-jurisdictional challenges including trafficking and limited worker representation. My evaluative framework enabled a holistic analysis of decent work, identifying linked concerns such as widespread illegal fishing and threats to food security. Finally, I conducted an analysis of market-based approaches that include criteria for social responsibility. Interviews with experts highlight that market-based approaches, particularly fishery improvement projects, hold great potential as strategies to improve human rights in fisheries. However, concerns around market-based approaches include a lack of strong enforcement mechanisms, limited worker representation, and the voluntary nature of initiatives hinder effective change on the ground. Overall, my research suggests that efforts to improve human rights in fisheries are nascent and need further development. By encouraging mandatory due diligence, improved worker representation, and stricter accountability, interventions can more effectively address risks and ensure rights of fishers and fishworkers are protected and respected.
Date Created
2022
Agent

Literature Review and Definitions

165212-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

Date Created
2022-05
Agent

Dilly Final Project (Spring 2022)

165211-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

Date Created
2022-05
Agent

Containment Flowchart With Links

165210-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

Date Created
2022-05
Agent

Testing and Regulation of Genetically Engineered Biological Containment Techniques

Description
Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.
Date Created
2022-05
Agent