Mycobacterium spp. Succession in a Premise Plumbing Pipe Rack: Evaluation of Predictive Factors

193622-Thumbnail Image.png
Description
Waterborne opportunistic pathogens, particularly non-tuberculous mycobacteria(NTM), pose significant challenges to public health. This study aims to address critical gaps in understanding mycobacterial succession within premise plumbing systems, focusing on diversity, morphology, and factors influencing persistence. A premise plumbing pipe rack

Waterborne opportunistic pathogens, particularly non-tuberculous mycobacteria(NTM), pose significant challenges to public health. This study aims to address critical gaps in understanding mycobacterial succession within premise plumbing systems, focusing on diversity, morphology, and factors influencing persistence. A premise plumbing pipe rack experiment was conducted with various pipe materials under real-world conditions. Water samples were collected and analyzed for NTM presence using culture-based and molecular techniques. During the cultivation of various isolates, two main morphologies were noted, revealing insights into the dynamics of mycobacterial communities within premise plumbing systems. Polymerase chain reaction (PCR) analysis attributed the yellow colonies to M. intracellulare or M. chimaera, while the white colonies represented unidentified mycobacterial species. The temporal dynamics of mycobacterial presence, assessed through PCR analysis over 7 weeks, demonstrated fluctuations influenced by source water conditions and disinfectant levels. Different pipe materials exhibited varying levels of mycobacterial colonization, with PVC pipes showing the highest percent positive. Species-level PCR analysis revealed dominance of M. intracellulare/M. chimaera in copper and PEX pipes, while "other" species were more prevalent in PVC pipes. The dominance of human-relevant species raises concerns for health, particularly among immunocompromised individuals. Future sequencing work is necessary to distinguish between M. intracellulare and M. chimaera, a differentiation that could provide valuable insights into the sources and transmission routes of these pathogens in the environment.
Date Created
2024
Agent

Understanding Drinking Water Quality and Evaluating the Risks of Opportunistic Pathogens in Building Water Systems

189363-Thumbnail Image.png
Description
This dissertation focused on studying risks associated with emerging drinking water contaminants and tradeoffs related to water management interventions. The built environment impacts health, as humans on average spend ~90% of their time indoors. Federal regulations generally focus on drinking

This dissertation focused on studying risks associated with emerging drinking water contaminants and tradeoffs related to water management interventions. The built environment impacts health, as humans on average spend ~90% of their time indoors. Federal regulations generally focus on drinking water at the water treatment plant and within the distribution system as opposed to when it enters buildings after crossing the property line. If drinking water is not properly managed in buildings, it can be a source or amplifier of microbial and chemical contaminants. Unlike regulations for chemical contaminants that are risk-based, for pathogens, regulations are either based on recommended treatment technologies or designated as zero, which is not achievable in practice. Practice-based judgments are typically made at the building level to maintain water quality. This research focuses on two drinking water opportunistic pathogens of public health concern, Legionella pneumophila and Mycobacterium avium complex (MAC). Multiple aspects of drinking water quality in two green buildings were monitored in tandem with water management interventions. Additionally, a quantitative microbial risk assessment framework was used to predict risk-based critical concentrations of MAC for drinking water-related exposures in the indoor environment corresponding to a 1 in 10,000 annual infection target risk benchmark. The overall goal of this work was to inform the development of water management plans and guidelines for buildings that will improve water quality in the built environment and promote better public health. It was determined that a whole building water softening system with ion exchange softening resin and expansion tanks were unexplored reservoirs for the colonization of L. pneumophila. Furthermore, it was observed that typical water management interventions such as flushing and thermal disinfection did not always mitigate water quality issues. Thus, there was a need to implement several atypical interventions such as equipment replacement to improve the building water quality. This work has contributed comprehensive field studies and models that have highlighted the need for additional niches, facility management challenges, and risk tradeoffs for focus in water safety plans. The work also informs additional risk-based water quality policy approaches for reducing drinking water risks.
Date Created
2023
Agent

Monitoring Contaminants of Emerging Concern in Global Wastewater Using Sewage Epidemiology

168437-Thumbnail Image.png
Description
This dissertation applies wastewater-based epidemiology (WBE) to aqueous process flows to gauge the public health status concerning exposure and potential abuse of pharmaceuticals, antimicrobials, and narcotics. The masses of emerging contaminants emitted into Indian aquatic and terrestrial environments were the

This dissertation applies wastewater-based epidemiology (WBE) to aqueous process flows to gauge the public health status concerning exposure and potential abuse of pharmaceuticals, antimicrobials, and narcotics. The masses of emerging contaminants emitted into Indian aquatic and terrestrial environments were the highest for open defecation (17 ± 12 mt/d), with non-steroidal anti-inflammatory drugs dominating environmental loading (14 ± 10 mt/d), followed by antibiotics, antimicrobials, phthalates and miscellaneous pharmaceuticals (Chapter 2). Fourteen wastewater treatment plants sampled across the U.S. had a combined average mass loading of 71 ± 12 µg/d/capita for the antimicrobials triclosan and triclocarban, with paraben compounds contributing 19 ± 5 µg/d/US capita. Risk models showed unfavorable hazard quotients (HQ>1) for sensitive aquatic organisms (algae, zebra fish and rainbow trout) from predicted exposures to antimicrobials of alternative use, i.e., chlorhexidine and benzalkonium chloride (Chapter 3). Substances subject to licit and illicit use, monitored by WBE in a medium-sized southwestern U.S. city before and during COVID-19-related lockdowns, showed the highest mass loads for cocaine and its major metabolite benzoylecgonine (2,207 total), methadone and its major metabolite 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (197), parent mitragynine (60), oxycodone and its major metabolite noroxycodone (48), heroin and its major metabolite 6-acetylmorphine (45), and parent codeine (37) in mg/1,000 capita/day. Heroin use during the lockdown increased ~10-fold relative to the pre-lockdown baseline, whereas oxycodone and codeine mass loading decreased 5-fold and 2.5-fold, respectively (Chapter 4). Experiments elucidating the stability of stress hormones and their metabolites as a function of temperature and in-sewer residence time revealed a rapid degradation to completion over 24 hours at 35°C, whereas lower temperatures of 25°C and 15°C were found to allow for successful tracking of indicators of stress at the population level; statistically significant differences in stress hormone decay rates were observed due to geographic locations at 25°C (p=0.009) but not due to redox conditions in the sewer pipe (Chapter 5). This thesis demonstrated the successful application of WBE for studying population health frequently and inexpensively, with the limitation that a lack of centralized wastewater infrastructure in developing countries may create barriers for at-risk populations to access and utilize this novel technology (Chapter 6).
Date Created
2021
Agent

Understanding the Impacts of Building Design and Use on Potable Water Quality Through Enhanced Monitoring

161873-Thumbnail Image.png
Description
The intent of this dissertation was to advance the knowledge of the impacts of building design and use on the quality of the potable water. Fluctuations in water use by occupants and equipment can cause stagnant conditions that causes water

The intent of this dissertation was to advance the knowledge of the impacts of building design and use on the quality of the potable water. Fluctuations in water use by occupants and equipment can cause stagnant conditions that causes water quality decay such as loss of chlorine disinfectant, an increase in microorganism and pathogen growth, an increase in metals concentrations, and an increase in disinfection byproducts. The United States Environmental Protection Agency has drinking water standards for distribution systems, but these standards stop at the meter with exception of the Lead and Copper Rule. There are also building codes to ensure proper plumbing materials are used that come in contact with potable water. However, neither standards nor codes require building water quality monitoring. Therefore, monitoring the building potable water system is an important aspect of building water quality that is not done on a large scale.Chapter 2 investigated how water quality evolved in a “green”, multi-story, institutional building during the first 6 months of building life. The results indicated that Wi-Fi logins could be used to correlate occupancy activity and copper (Cu) concentrations in water. As occupancy activity increased, Cu concentrations decreased. However, chlorine (Cl2) residual (or free chlorine) was only measurable twice at two kitchen sinks via grab sampling during the duration of the 6-month study regardless of occupancy activity. Chapter 3 provided improved understanding of how to carry out effective building water sampling (e.g., grab samples vs real time) and which water quality parameters were most influenced by the building water system during the first year of occupancy in relation to municipal water quality. The results showed the temperature (T), pH, UVA254, a surrogate for organic matter, cellular adenosine triphosphate (cATP), trihalomethanes (THMs), and Cu were always greater inside the building than at building entry while free Cl2 was always lower inside the building than at the building entry. Chapter 4 investigated a remedial flushing program for three schools. Overall, the study showed the quality of water does change after a flushing event. Free Cl2 was reestablished, and metals concentrations decreased. However, equipment flushing, such as hot water heaters, may be necessary to fully remediate Legionella. Lastly, one-time flushing is most likely a temporary solution. A more routine approach to building flushing and monitoring may be necessary until normal or sustained occupancy resumes.
Date Created
2021
Agent