171360-Thumbnail Image.png
Description
Combining 3D bio-printing and drug delivery are promising techniques tofabricate scaffolds with well controlled and patient-specific structures for tissue engineering. In this study, silk derivatives of bioink were developed consisting of silk fibroin and gelatin then 3D printed into scaffolds. The scaffolds

Combining 3D bio-printing and drug delivery are promising techniques tofabricate scaffolds with well controlled and patient-specific structures for tissue engineering. In this study, silk derivatives of bioink were developed consisting of silk fibroin and gelatin then 3D printed into scaffolds. The scaffolds would be evaluated for small molecule release, cell growth, degradation, and morphology. Preparations and design of the scaffolds are major parts of engineering and tissue engineering. Scaffolds are designed to mimic extracellular matrix by providing structural support as well as promoting cell attachment and proliferation with minimum inflammation while degrading at a controlled rate. Scaffolds offers new potentials in medicine by aiding in the preparation of personalized and controlled release therapeutic systems.
Reuse Permissions


  • Download restricted.
    Download count: 4

    Details

    Title
    • 3D printed Bioactive Scaffolds for Tissue Repair and Drug Delivery
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2022
    • Field of study: Chemical Engineering

    Machine-readable links