Reliability Assessment Methodologies for Photovoltaic Modules

158398-Thumbnail Image.png
Description
The main objective of this research is to develop reliability assessment methodologies to quantify the effect of various environmental factors on photovoltaic (PV) module performance degradation. The manufacturers of these photovoltaic modules typically provide a warranty level of about 25

The main objective of this research is to develop reliability assessment methodologies to quantify the effect of various environmental factors on photovoltaic (PV) module performance degradation. The manufacturers of these photovoltaic modules typically provide a warranty level of about 25 years for 20% power degradation from the initial specified power rating. To quantify the reliability of such PV modules, the Accelerated Life Testing (ALT) plays an important role. But there are several obstacles that needs to be tackled to conduct such experiments, since there has not been enough historical field data available. Even if some time-series performance data of maximum output power (Pmax) is available, it may not be useful to develop failure/degradation mode-specific accelerated tests. This is because, to study the specific failure modes, it is essential to use failure mode-specific performance variable (like short circuit current, open circuit voltage or fill factor) that is directly affected by the failure mode, instead of overall power which would be affected by one or more of the performance variables. Hence, to address several of the above-mentioned issues, this research is divided into three phases. The first phase deals with developing models to study climate specific failure modes using failure mode specific parameters instead of power degradation. The limited field data collected after a long time (say 18-21 years), is utilized to model the degradation rate and the developed model is then calibrated to account for several unknown environmental effects using the available qualification testing data. The second phase discusses the cumulative damage modeling method to quantify the effects of various environmental variables on the overall power production of the photovoltaic module. Mainly, this cumulative degradation modeling approach is used to model the power degradation path and quantify the effects of high frequency multiple environmental input data (like temperature, humidity measured every minute or hour) with very sparse response data (power measurements taken quarterly or annually). The third phase deals with optimal planning and inference framework using Iterative-Accelerated Life Testing (I-ALT) methodology. All the proposed methodologies are demonstrated and validated using appropriate case studies.
Date Created
2020
Agent

Dependence of toxicity test results on sample removal methods of PV modules

156589-Thumbnail Image.png
Description
The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in

The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV modules lying in the landfills by 2050, that may not become a not-so-sustainable way of sourcing energy since all PV modules could contain certain amount of toxic substances. Currently in the United States, PV modules are categorized as general waste and can be disposed in landfills. However, potential leaching of toxic chemicals and materials, if any, from broken end-of-life modules may pose health or environmental risks. There is no standard procedure to remove samples from PV modules for chemical toxicity testing in the Toxicity Characteristic Leaching Procedure (TCLP) laboratories as per EPA 1311 standard. The main objective of this thesis is to develop an unbiased sampling approach for the TCLP testing of PV modules. The TCLP testing was concentrated only for the laminate part of the modules, as they are already existing recycling technologies for the frame and junction box components of PV modules. Four different sample removal methods have been applied to the laminates of five different module manufacturers: coring approach, cell-cut approach, strip-cut approach, and hybrid approach. These removed samples were sent to two different TCLP laboratories, and TCLP results were tested for repeatability within a lab and reproducibility between the labs. The pros and cons of each sample removal method have been explored and the influence of sample removal methods on the variability of TCLP results has been discussed. To reduce the variability of TCLP results to an acceptable level, additional improvements in the coring approach, the best of the four tested options, are still needed.
Date Created
2018
Agent

Cell and substrate temperatures of glass/glass and glass/polymer PV modules

155871-Thumbnail Image.png
Description
Performance of photovoltaic (PV) modules decrease as the operating temperatures increase. In hot climatic conditions, the operating temperature can reach as high as 85°C for the rooftop modules. Considering a typical power drop of 0.5%/°C for crystalline silicon modules, a

Performance of photovoltaic (PV) modules decrease as the operating temperatures increase. In hot climatic conditions, the operating temperature can reach as high as 85°C for the rooftop modules. Considering a typical power drop of 0.5%/°C for crystalline silicon modules, a performance decrease of approximately 30% could be expected during peak summer seasons due to the difference between module rated temperature of 25°C and operating temperature of 85°C. Therefore, it is critical to accurately predict the temperature of the modules so the performance can be accurately predicted. The module operating temperature is based not only on the ambient and irradiance conditions but is also based on the thermal properties of module packaging materials. One of the key packaging materials that would influence the module operating temperature is the substrate, polymer backsheet or glass. In this study, the thermal influence of three different polymer backsheet substrates and one glass substrate has been investigated through five tasks:

1. Determination and modeling of substrate or module temperature of coupons using four different substrates (three backsheet materials and one glass material).

2. Determination and modeling of cell temperature of coupons using four different substrates (three backsheet materials and one glass material)

3. Determination of temperature difference between cell and individual substrates for coupons of all four substrates

4. Determination of NOCT (nominal operating cell temperature) of coupons using all four substrate materials

5. Comparison of operating temperature difference between backsheet substrate coupons.

All these five tasks have been executed using the specially constructed one-cell coupons with identical cells but with four different substrates. For redundancy, two coupons per substrate were constructed and investigated. This study has attempted to model the effect of thermal conductivity of backsheet material on the cell and backsheet temperatures.
Date Created
2017
Agent

Standardized sample extraction procedure for TCLP testing of PV modules

155828-Thumbnail Image.png
Description
Solar photovoltaic (PV) deployment has grown at unprecedented rates since the early 2000s. As the global PV market increases, so will the volume of decommissioned PV panels. Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities

Solar photovoltaic (PV) deployment has grown at unprecedented rates since the early 2000s. As the global PV market increases, so will the volume of decommissioned PV panels. Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. Currently, in the United States, there are no regulations for governing the recycling of solar panels and the recycling process varies by the manufacturer. To bring in PV specific recycling regulations, whether the PV panels are toxic to the landfills, is to be determined. Per existing EPA regulations, PV panels are categorized as general waste and are subjected to a toxicity characterization leaching procedure (TCLP) to determine if it contains any toxic metals that can possibly leach into the landfill. In this thesis, a standardized procedure is developed for extracting samples from an end of life PV module. A literature review of the existing regulations in Europe and other countries is done. The sample extraction procedure is tested on a crystalline Si module to validate the method. The extracted samples are sent to an independent TCLP testing lab and the results are obtained. Image processing technique developed at ASU PRL is used to detect the particle size in a broken module and the size of samples sent is confirmed to follow the regulation.
Date Created
2017
Agent

Seasonal and tilt angle dependence of soiling loss factor and development of artificial soil deposition chamber replicating natural dew cycle

155732-Thumbnail Image.png
Description
This is a two-part thesis. Part 1 presents the seasonal and tilt angle dependence of soiling loss factor of photovoltaic (PV) modules over two years for Mesa, Arizona (a desert climatic condition). Part 2 presents the development of an indoor

This is a two-part thesis. Part 1 presents the seasonal and tilt angle dependence of soiling loss factor of photovoltaic (PV) modules over two years for Mesa, Arizona (a desert climatic condition). Part 2 presents the development of an indoor artificial soil deposition chamber replicating natural dew cycle. Several environmental factors affect the performance of PV systems including soiling. Soiling on PV modules results in a decrease of sunlight reaching the solar cell, thereby reducing the current and power output. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The dust particles vary from one location to the other in terms of particle size, color, and chemical composition. The thickness and properties of the soil layer determine the optical path of light through the soil/glass interface. Soil accumulation on the glass surface is also influenced by environmental factors such as dew, wind speeds and rainfall. Studies have shown that soil deposition is closely related to tilt angle and exposure period before a rain event. The first part of this thesis analyzes the reduction in irradiance transmitted to a solar cell through the air/soil/glass in comparison to a clean cell (air/glass interface). A time series representation is used to compare seasonal soiling loss factors for two consecutive years (2014-2016). The effect of tilt angle and rain events on these losses are extensively analyzed. Since soiling is a significant field issue, there is a growing need to address the problem, and several companies have come up with solutions such as anti-soiling coatings, automated cleaning systems etc. To test and validate the effectiveness of these anti-soiling coating technologies, various research institutes around the world are working on the design and development of artificial indoor soiling chambers to replicate the natural process in the field. The second part of this thesis work deals with the design and development of an indoor artificial soiling chamber that replicates natural soil deposition process in the field.
Date Created
2017
Agent

Photovoltaic systems: forecasting for demand response management and environmental modelling to design accelerated aging tests

155450-Thumbnail Image.png
Description
Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems

Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems depend on the stochastic variation of environmental factors (solar irradiance, ambient temperature & wind speed) and random mechanical failures/repairs. Monte Carlo Simulation which is typically used to model such problems becomes too computationally intensive leading to simplifying state-space assumptions. Multi-state models for power system reliability offer a higher flexibility in providing a description of system state evolution and an accurate representation of probability. In this study, Universal Generating Functions (UGF) were used to solve such combinatorial problems. 8 grid connected Solar PV systems were analyzed with a combined capacity of about 5MW located in a hot-dry climate (Arizona) and accuracy of 98% was achieved when validated with real-time data. An analytics framework is provided to grid operators and utilities to effectively forecast energy produced by distributed energy assets and in turn, develop strategies for effective Demand Response in times of increased share of renewable distributed energy assets in the grid. Second part of this thesis extends the environmental modelling approach to develop an aging test to be run in conjunction with an accelerated test of Solar PV modules. Accelerated Lifetime Testing procedures in the industry are used to determine the dominant failure modes which the product undergoes in the field, as well as predict the lifetime of the product. UV stressor is one of the ten stressors which a PV module undergoes in the field. UV exposure causes browning of modules leading to drop in Short Circuit Current. This thesis presents an environmental modelling approach for the hot-dry climate and extends it to develop an aging test methodology. This along with the accelerated tests would help achieve the goal of correlating field failures with accelerated tests and obtain acceleration factor. This knowledge would help predict PV module degradation in the field within 30% of the actual value and help in knowing the PV module lifetime accurately.
Date Created
2017
Agent