Algorithms for neural prosthetic applications

155473-Thumbnail Image.png
Description
In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to

In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central or peripheral). Recent studies in non-human primates and humans have shown the possibility of controlling a prosthesis for accomplishing varied tasks such as self-feeding, typing, reaching, grasping, and performing fine dexterous movements. A neural decoding system comprises mainly of three components: (i) sensors to record neural signals, (ii) an algorithm to map neural recordings to upper limb kinematics and (iii) a prosthetic arm actuated by control signals generated by the algorithm. Machine learning algorithms that map input neural activity to the output kinematics (like finger trajectory) form the core of the neural decoding system. The choice of the algorithm is thus, mainly imposed by the neural signal of interest and the output parameter being decoded. The various parts of a neural decoding system are neural data, feature extraction, feature selection, and machine learning algorithm. There have been significant advances in the field of neural prosthetic applications. But there are challenges for translating a neural prosthesis from a laboratory setting to a clinical environment. To achieve a fully functional prosthetic device with maximum user compliance and acceptance, these factors need to be addressed and taken into consideration. Three challenges in developing robust neural decoding systems were addressed by exploring neural variability in the peripheral nervous system for dexterous finger movements, feature selection methods based on clinically relevant metrics and a novel method for decoding dexterous finger movements based on ensemble methods.
Date Created
2017
Agent

Comparison of feature selection methods for robust dexterous decoding of finger movements from the primary motor cortex of a non-human primate using support vector machine

153889-Thumbnail Image.png
Description
Robust and stable decoding of neural signals is imperative for implementing a useful neuroprosthesis capable of carrying out dexterous tasks. A nonhuman primate (NHP) was trained to perform combined flexions of the thumb, index and middle fingers in addition to

Robust and stable decoding of neural signals is imperative for implementing a useful neuroprosthesis capable of carrying out dexterous tasks. A nonhuman primate (NHP) was trained to perform combined flexions of the thumb, index and middle fingers in addition to individual flexions and extensions of the same digits. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon action potential firing rates. The effect of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis, and Mutual Information Maximization was compared based on SVM classification performance. SVM classification was used to examine the functional parameters of (i) efficacy (ii) endurance to simulated failure and (iii) longevity of classification. The effect of using isolated-neuron and multi-unit firing rates was compared as the feature vector supplied to the SVM. The best classification performance was on post-implantation day 36, when using multi-unit firing rates the worst classification accuracy resulted from features selected with Wilcoxon signed-rank test (51.12 ± 0.65%) and the best classification accuracy resulted from Mutual Information Maximization (93.74 ± 0.32%). On this day when using single-unit firing rates, the classification accuracy from the Wilcoxon signed-rank test was 88.85 ± 0.61 % and Mutual Information Maximization was 95.60 ± 0.52% (degrees of freedom =10, level of chance =10%)
Date Created
2015
Agent