Predictive Process Design Kits for the 7 nm and 5 nm Technology Nodes

157985-Thumbnail Image.png
Description
Recent years have seen fin field effect transistors (finFETs) dominate modern complementary metal oxide semiconductor (CMOS) processes, [1][2], e.g., at the sub 20 nm technology nodes, as they alleviate short channel effects, provide lower leakage, and enable some continued VDD

Recent years have seen fin field effect transistors (finFETs) dominate modern complementary metal oxide semiconductor (CMOS) processes, [1][2], e.g., at the sub 20 nm technology nodes, as they alleviate short channel effects, provide lower leakage, and enable some continued VDD scaling. However, a realistic finFET based predictive process design kit (PDK) that supports investigation into both circuit and physical design, encompassing all aspects of digital design, for academic use has been unavailable. While the finFET based FreePDK15 was supplemented with a standard cell library, it lacked full physical verification (LVS) and parasitic extraction at the time [3][4]. Consequently, the only available sub 45 nm educational PDKs are the planar CMOS based Synopsys 32/28 nm and FreePDK45 (45 nm PDK) [5][6]. The cell libraries available for those processes are not realistic since they use large cell heights, in contrast to recent industry trends. Additionally, the SRAM rules and cells provided by these PDKs are not realistic. Because finFETs have a 3D structure, which affects transistor density, using planar libraries scaled to sub 22 nm dimensions for research is likely to give poor accuracy.

Commercial libraries and PDKs, especially for advanced nodes, are often difficult to obtain for academic use, and access to the actual physical layouts is even more restricted. Furthermore, the necessary non disclosure agreements (NDAs) are un manageable for large university classes and the plethora of design rules can distract from the key points. NDAs also make it difficult for the publication of physical design as these may disclose proprietary design rules and structures.

This work focuses on the development of realistic PDKs for academic use that overcome these limitations. These PDKs, developed for the N7 and N5 nodes, even before 7 nm and 5 nm processes were available in industry, are thus predictive. The predictions have been based on publications of the continually improving lithography, as well as estimates of what would be available at N7 and N5. For the most part, these assumptions have been accurate with regards to N7, except for the expectation that extreme ultraviolet (EUV) lithography would be widely available, which has turned out to be optimistic.
Date Created
2019
Agent

Reliability issues and design solutions in advanced CMOS design

154803-Thumbnail Image.png
Description
Over decades, scientists have been scaling devices to increasingly smaller feature sizes for ever better performance of complementary metal-oxide semiconductor (CMOS) technology to meet requirements on speed, complexity, circuit density, power consumption and ultimately cost required by many advanced applications.

Over decades, scientists have been scaling devices to increasingly smaller feature sizes for ever better performance of complementary metal-oxide semiconductor (CMOS) technology to meet requirements on speed, complexity, circuit density, power consumption and ultimately cost required by many advanced applications. However, going to these ultra-scaled CMOS devices also brings some drawbacks. Aging due to bias-temperature-instability (BTI) and Hot carrier injection (HCI) is the dominant cause of functional failure in large scale logic circuits. The aging phenomena, on top of process variations, translate into complexity and reduced design margin for circuits. Such issues call for “Design for Reliability”. In order to increase the overall design efficiency, it is important to (i) study the impact of aging on circuit level along with the transistor level understanding (ii) calibrate the theoretical findings with measurement data (iii) implementing tools that analyze the impact of BTI and HCI reliability on circuit timing into VLSI design process at each stage. In this work, post silicon measurements of a 28nm HK-MG technology are done to study the effect of aging on Frequency Degradation of digital circuits. A novel voltage controlled ring oscillator (VCO) structure, developed by NIMO research group is used to determine the effect of aging mechanisms like NBTI, PBTI and SILC on circuit parameters. Accelerated aging mechanism is proposed to avoid the time consuming measurement process and extrapolation of data to the end of life thus instead of predicting the circuit behavior, one can measure it, within a short period of time. Finally, to bridge the gap between device level models and circuit level aging analysis, a System Level Reliability Analysis Flow (SyRA) developed by NIMO group, is implemented for a TSMC 65nm industrial level design to achieve one-step reliability prediction for digital design.
Date Created
2016
Agent

Methodical design approaches to multiple node collection robustness for flip-flop soft error mitigation

153386-Thumbnail Image.png
Description
The space environment comprises cosmic ray particles, heavy ions and high energy electrons and protons. Microelectronic circuits used in space applications such as satellites and space stations are prone to upsets induced by these particles. With transistor dimensions shrinking due

The space environment comprises cosmic ray particles, heavy ions and high energy electrons and protons. Microelectronic circuits used in space applications such as satellites and space stations are prone to upsets induced by these particles. With transistor dimensions shrinking due to continued scaling, terrestrial integrated circuits are also increasingly susceptible to radiation upsets. Hence radiation hardening is a requirement for microelectronic circuits used in both space and terrestrial applications.

This work begins by exploring the different radiation hardened flip-flops that have been proposed in the literature and classifies them based on the different hardening techniques.

A reduced power delay element for the temporal hardening of sequential digital circuits is presented. The delay element single event transient tolerance is demonstrated by simulations using it in a radiation hardened by design master slave flip-flop (FF). Using the proposed delay element saves up to 25% total FF power at 50% activity factor. The delay element is used in the implementation of an 8-bit, 8051 designed in the TSMC 130 nm bulk CMOS.

A single impinging ionizing radiation particle is increasingly likely to upset multiple circuit nodes and produce logic transients that contribute to the soft error rate in most modern scaled process technologies. The design of flip-flops is made more difficult with increasing multi-node charge collection, which requires that charge storage and other sensitive nodes be separated so that one impinging radiation particle does not affect redundant nodes simultaneously. We describe a correct-by-construction design methodology to determine a-priori which hardened FF nodes must be separated, as well as a general interleaving scheme to achieve this separation. We apply the methodology to radiation hardened flip-flops and demonstrate optimal circuit physical organization for protection against multi-node charge collection.

Finally, the methodology is utilized to provide critical node separation for a new hardened flip-flop design that reduces the power and area by 31% and 35% respectively compared to a temporal FF with similar hardness. The hardness is verified and compared to other published designs via the proposed systematic simulation approach that comprehends multiple node charge collection and tests resiliency to upsets at all internal and input nodes. Comparison of the hardness, as measured by estimated upset cross-section, is made to other published designs. Additionally, the importance of specific circuit design aspects to achieving hardness is shown.
Date Created
2015
Agent