Transitioning into Complexity-Driven Resilience Assessments for Urban Systems

Description
Extreme weather events, such as hurricanes, continue to disrupt critical infrastructure like energy grids that provide lifeline services for urban systems, thus making resilience imperative for stakeholders, infrastructure managers, and community leaders to strategize in the face of 21st-century challenges.

Extreme weather events, such as hurricanes, continue to disrupt critical infrastructure like energy grids that provide lifeline services for urban systems, thus making resilience imperative for stakeholders, infrastructure managers, and community leaders to strategize in the face of 21st-century challenges. In Puerto Rico after Hurricane Maria, for example, the energy system took over nine months to recover in parts of the island, thousands of lives were lost, and livelihoods were severely impacted. Urban systems consist of interconnected human networks and physical infrastructure, and the subsequent complexity that is increasingly difficult to make sense of toward resilience enhancing efforts. While the resilience paradigm has continued to progress among and between several disciplinary fields, such as social science and engineering, an ongoing challenge is integrating social and technical approaches for resilience research. Misaligned or siloed perspectives can lead to misinformative and inadequate strategies that undercut inherent capacities or ultimately result in maladaptive infrastructure, social hardship, and sunken investments. This dissertation contributes toward integrating the social and technical resilience domains and transitioning established disaster resilience assessments into complexity perspectives by asking the overarching question: How can a multiplicity of resilience assessments be integrated by geographic and network mapping approaches to better capture the complexity of urban systems, using Hurricane Maria in Puerto Rico as a case study? The first chapter demonstrates how social metrics can be used in a socio-technical network modeling framework for a large-scale electrical system, presents a novel framing of social hardship due to disasters, and proposes a method for developing a social hardship metric using a treatment-effect approach. A second chapter presents a conceptual analysis of disaster resilience indicators from a complexity perspective and links socio-ecological systems resilience principles to tenets of complexity. A third chapter presents a novel methodology for integrating social complexity with performance-based metrics by leveraging distributed ethnographies and a thick mapping approach. Lastly, a concluding chapter synthesizes the previous chapters to discuss a broad framing for socio-technical resilience assessments, the role of space and place as anchors for multiple framings of a complex system, caveats given ongoing developments in Puerto Rico, and implications for collaborative resilience research.
Date Created
2021
Agent

Using a Calibrated Detailed Building Energy Simulation Model to Compare the Potential of Energy Efficiency and Renewable Energy in the Kuwaiti Residential Sector

158765-Thumbnail Image.png
Description
Due to extreme summer temperatures that regularly reach 122°F (50°C), cooling energy requirements have been responsible for 70% of peak demand and 45% of total electricity consumption in Kuwait. It is estimated that 50%-60% of electric power is consumed by

Due to extreme summer temperatures that regularly reach 122°F (50°C), cooling energy requirements have been responsible for 70% of peak demand and 45% of total electricity consumption in Kuwait. It is estimated that 50%-60% of electric power is consumed by the residential sector, mostly in detached villas. This study analyzes the potential impact of energy efficiency measures (EEM) and renewable energy (RE) measures on the electric energy requirements of an existing villa built in 2004. Using architectural plans, interview data, and the eQUEST building energy simulation tool, a building energy model (BEM) was developed for a villa calibrated with hourly energy use data for the year 2014. Although the modeled villa consumed less energy than an average Kuwaiti villa of the same size, 26% energy reductions were still possible under compliance with 2018 building codes. Compliance with 2010 and 2014 building codes, however, would have increased energy use by 19% and 3% respectively. Furthermore, survey data of 150 villas was used to generate statistics on rooftop solar area availability. Accordingly, it was found that 78% of the survey sample’s average total rooftop area was not suitable for rooftop solar systems due to shading and other obstacles. The integration of a solar canopy circumvents this issue and also functions as a shading device for outdoor activities and as a protective cover for AC units and water tanks. Combining the highest modeled EEMs and RE measures on the villa, the energy use intensity (EUI) would be reduced to 15 kWh/m2/year from a baseline value of 127 kWh/m2/year, close to net zero. Finally, it was determined that EEMs were able to reduce the entire demand profile whereas RE measures were most effective at reducing demand around mid-day hours. In future studies, more effort should be spent on collecting hourly data from multiple villas to assist in the development of a detailed hourly bottom-up residential energy modeling methodology.
Date Created
2020
Agent

Analysis of the impact of urban heat island on energy consumption of buildings in Phoenix

150463-Thumbnail Image.png
Description
The Urban Heat Island (UHI) has been known to have been around from as long as people have been urbanizing. The growth and conglomeration of cities in the past century has caused an increase in the intensity and impact of

The Urban Heat Island (UHI) has been known to have been around from as long as people have been urbanizing. The growth and conglomeration of cities in the past century has caused an increase in the intensity and impact of Urban Heat Island, causing significant changes to the micro-climate and causing imbalances in the temperature patterns of cities. The urban heat island (UHI) is a well established phenomenon and it has been attributed to the reduced heating loads and increased cooling loads, impacting the total energy consumption of affected buildings in all climatic regions. This thesis endeavors to understand the impact of the urban heat island on the typical buildings in the Phoenix Metropolitan region through an annual energy simulation process spanning through the years 1950 to 2005. Phoenix, as a representative city for the hot-arid cooling-dominated region, would be an interesting example to see how the reduction in heating energy consumption offsets the increased demand for cooling energy in the building. The commercial reference building models from the Department of Energy have been used to simulate commercial building stock, while for the residential stock a representative residential model prescribing to IECC 2006 standards will be used. The multiyear simulation process will bring forth the energy consumptions of various building typologies, thus highlighting differing impacts on the various building typologies. A vigorous analysis is performed to see the impact on the cooling loads annually, specifically during summer and summer nights, when the impact of the 'atmospheric canopy layer' - urban heat island (UHI) causes an increase in the summer night time minimum and night time average temperatures. This study also shows the disparity in results of annual simulations run utilizing a typical meteorological year (TMY) weather file, to that of the current recorded weather data. The under prediction due to the use of TMY would translate to higher or lower predicted energy savings in the future years, for changes made to the efficiencies of the cooling or heating systems and thermal performance of the built-forms. The change in energy usage patterns caused by higher cooling energy and lesser heating energy consumptions could influence future policies and energy conservation standards. This study could also be utilized to understand the impacts of the equipment sizing protocols currently adopted, equipment use and longevity and fuel swapping as heating cooling ratios change.
Date Created
2011
Agent